Integrins link the cytoskeleton to the extracellular matrix, providing outside-in/inside-out signalling essential for vascular smooth muscle cell (VSMC) migration in atherosclerosis. The integrin av subunit is synthesised from its precursor via furin-dependent endoproteolytic cleavage. Furin is a proprotein convertase (PC) highly expressed in VSMCs and in human atherosclerotic lesions. Inhibition of av processing inhibits binding to vitronectin and migration. However, the precise role of furin-dependent av cleavage on integrin bidirectional signalling and subsequent VSMC functions is unknown. Our present study demonstrates that the furin-like PC inhibitor decanoyl-RVKR-chloromethylketone (dec-CMK) inhibited av cleavage. This reduced vitronectin-induced (outside-in) focal adhesion kinase (FAK)- and paxillin-phosphorylation, and VSMC motility. Inside-out-stimulated, integrin- mediated VSMC adhesion/migration relied on integrin-adaptor protein activation following protein kinase C (PKC) and ERK1/2 phosphorylation. In contrast to outside-in signalling, PKC-dependent phosphorylation of FAK and paxillin was unaffected by the status of integrin cleavage. Still, cytoskeleton and focal adhesion site rearrangements were modulated by the inhibition of furin-dependent integrin cleavage, thereby lessening inside-out dependent migration. Hence, we find that integrin bidirectional signalling is critically controlled by furin. Furin- dependent integrin processing modulates rapid adaptive integrin/cytoskeleton changes, essential to VSMC motility, which represents a crucial component in atherosclerosis and restenosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1160/TH09-07-0478 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!