Exposure of mouse embryonic stem (mES) cells to high concentrations of chemical nitric oxide (NO) donors promotes differentiation, but the mechanisms involved in this process at the gene expression level are poorly defined. In this study we report that culture of mES cells in the presence of 0.25-1.0 mM diethylenetriamine nitric oxide adduct (DETA-NO) leads to downregulation of Nanog and Oct4, the two master genes involved in the control of the pluripotent state. This action of NO was also apparent in the human ES cell line, HS 181. The suppressive action of NO on Nanog gene depends on the activation of p53 repressor protein by covalent modifications, such as pSer15, pSer315, pSer392 and acetyl Lys 379. NO-induced repression of Nanog is also associated with binding of trimethylated histone H3 and pSer315 p53 to its promoter region. In addition, exposure to 0.5 mM DETA-NO induces early differentiation events of cells with acquisition of epithelial morphology and expression of markers of definitive endoderm, such as FoxA2, Gata4, Hfn1-beta and Sox 17. This phenotype was increased when cells were treated with valproic acid (VPA) for 10 days.

Download full-text PDF

Source
http://dx.doi.org/10.1038/cdd.2009.204DOI Listing

Publication Analysis

Top Keywords

nitric oxide
12
repression nanog
8
mouse embryonic
8
embryonic stem
8
mes cells
8
oxide repression
4
nanog
4
nanog promotes
4
promotes mouse
4
stem cell
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!