Hypoosmotic stress is a potent inducer of ornithine decarboxylase (ODC) activity in a variety of mammalian cells, but the physiological relevance of this response has not been determined. To test whether an increased putrescine content confers a growth advantage at lower osmolarities, we compared the ability of L1210 mouse leukemia cells and of ODC-overproducing variants obtained from this cell line (D-R cells) to proliferate after a hypotonic shock (325----130 mosmol/kg). The growth rate of D-R cells at 130 mosmol/kg was greater than or equal to 5-fold higher than in L1210 cells; and unlike the ODC-overproducing strain, L1210 cells underwent up to a 90% loss of viability over time as seen after restoration of normosmotic growth conditions and by trypan blue exclusion tests. The addition of putrescine or L-ornithine stimulated the proliferation of both cell sublines up to 5-fold in a concentration-dependent manner, with a maximal effect observed at about 10 and 100 microM, respectively. Putrescine restored virtually normal growth rates in both sublines at osmolarities as low as 190 mosmol/kg. No other alpha,omega-diamine was active in that respect whereas spermidine was markedly inhibitory. Furthermore, D-R cells incubated at 130 mosmol/kg showed a marked growth inhibition by 1-aminooxy-3-aminopropane (potent ODC inhibitor to which they are resistant in isotonic media) as a result of putrescine but not spermidine depletion. Whereas ODC was strongly and rapidly induced by hypotonic shock there was a precipitous decline in S-adenosylmethionine decarboxylase activity. Putrescine synthesis and accumulation were nevertheless reduced in D-R cells incubated at 130 mosmol/kg because of a decreased availability of L-ornithine. When either putrescine or L-ornithine was added to hypotonic media, D-R cells accumulated putrescine massively for extended periods together with a reduction in spermidine and spermine contents. Putrescine transport patterns were altered by hypotonic shock, net excretion of the diamine being reduced by about 80%, with a concurrent enlargement of the intracellular pool. Finally, parental L1210 cells incubated with an irreversible inhibitor of S-adenosylmethionine decarboxylase for 24 h until hypotonic shock and supplemented with putrescine in the presence of the drug thereafter exhibited a greatly exaggerated growth stimulation by the diamine. These results demonstrate an essential role for an early increase in putrescine content in the growth adaptation of a mammalian cell line to a lower osmolarity.
Download full-text PDF |
Source |
---|
Dis Res
January 2024
School of Biosciences, Department of Biomedical science, Firth Court, Western Bank, Sheffield S10 2TN, UK.
Cancer leads to nearly 10 million deaths worldwide per year. The tumour microenvironment (TME) is fundamental for tumour growth and progression. A key component of the TME, the extracellular matrix (ECM) has recently become a focus of interest in cancer research.
View Article and Find Full Text PDFDis Res
December 2023
Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106, USA.
Background: Dental pulp-derived stem cells (DPSC) is a promising therapy as they modulate the immune response, so we evaluated the inhibitory effect of DPSC secretome (DPSC) on the proliferation and inflammation in human glioblastoma (GBM) cells (U-87 MG) and elucidated the concomitant mechanisms involved.
Methods: The U87-MG cells were cultured with DPSC for 24 h and assessed the expression of inflammatory molecules using quantitative reverse transcription-polymerase chain reaction (qRT-PCR), generation of reactive oxygen species (ROS), and mitochondrial functionality using a seahorse flux analyzer. MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) assay and cell cycle analysis were performed to evaluate the proliferation and cell cycle.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!