Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The various organogenic programs deployed during embryonic development rely on the precise expression of a multitude of genes in time and space. Identifying the cis-regulatory elements responsible for this tightly orchestrated regulation of gene expression is an essential step in understanding the genetic pathways involved in development. We describe a strategy to systematically identify tissue-specific cis-regulatory elements that share combinations of sequence motifs. Using heart development as an experimental framework, we employed a combination of Gibbs sampling and linear regression to build a classifier that identifies heart enhancers based on the presence and/or absence of various sequence features, including known and putative transcription factor (TF) binding specificities. In distinguishing heart enhancers from a large pool of random noncoding sequences, the performance of our classifier is vastly superior to four commonly used methods, with an accuracy reaching 92% in cross-validation. Furthermore, most of the binding specificities learned by our method resemble the specificities of TFs widely recognized as key players in heart development and differentiation, such as SRF, MEF2, ETS1, SMAD, and GATA. Using our classifier as a predictor, a genome-wide scan identified over 40,000 novel human heart enhancers. Although the classifier used no gene expression information, these novel enhancers are strongly associated with genes expressed in the heart. Finally, in vivo tests of our predictions in mouse and zebrafish achieved a validation rate of 62%, significantly higher than what is expected by chance. These results support the existence of underlying cis-regulatory codes dictating tissue-specific transcription in mammalian genomes and validate our enhancer classifier strategy as a method to uncover these regulatory codes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2840982 | PMC |
http://dx.doi.org/10.1101/gr.098657.109 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!