The forkhead transcription factor, Foxp3, is thought to act as a master regulator that controls (suppresses) expression of the breast cancer oncogenes, SKP2 and HER-2/ErbB2. However, the mechanisms that regulate Foxp3 expression and thereby modulate tumor development remain largely unexplored. Here, we demonstrate that Foxp3 up-regulation requires p53 function, showing that Foxp3 expression is directly regulated by p53 upon DNA damage responses in human breast and colon carcinoma cells. Treatment with the genotoxic agents, doxorubicin or etoposide, induced Foxp3 expression in p53-positive carcinoma cells, but not in cells lacking p53 function. Furthermore, knock down of endogenous wild-type p53 using RNA interference abrogated Foxp3 induction by genotoxic agents, and exogenous expression of p53 in cells lacking p53 restored the responsiveness of Foxp3 to DNA-damaging stresses. In addition, Foxp3 knock down blunted the p53-mediated growth inhibitory response to DNA-damaging agents. These results suggest that induction of Foxp3 in the context of tumor suppression is regulated in a p53-dependent manner and implicate Foxp3 as a key determinant of cell fate in p53-dependent DNA damage responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832950 | PMC |
http://dx.doi.org/10.1074/jbc.M109.047985 | DOI Listing |
Egypt J Immunol
January 2025
Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
The autoimmune disease systemic lupus erythematosus (SLE) is presented with many clinical symptoms. The transcription factor fork head box protein 3 (Foxp3) is expressed on regulatory T (T-reg) cells and essential for its development and function. Functional single-nucleotide polymorphisms (SNPs) in the Foxp3-3279 (rs3761548 C/A) gene influence SLE pathogenesis.
View Article and Find Full Text PDFSci Prog
January 2025
Oncology Department, Affiliated Wuxi Fifth People's Hospital of Jiangnan University, Wuxi, Jiangsu, PR China.
Cell division cycle-associated (CDCA) genes are dysregulated in carcinomas. Our study aims to identify similarities and differences of the clinical roles of CDCAs in breast cancer (BRCA) and to explore their potential mechanisms. In GEPIA, compared to normal tissues, expressions of CDCAs were higher in BRCA and sub-types.
View Article and Find Full Text PDFSci Adv
January 2025
Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", IEOS-CNR, Napoli, Italy.
CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.
View Article and Find Full Text PDFNat Immunol
January 2025
Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA.
Here we analyzed the relative contributions of CD4 regulatory T cells expressing Forkhead box protein P3 (FOXP3) and CD8 regulatory T cells expressing killer cell immunoglobulin-like receptors to the control of autoreactive T and B lymphocytes in human tonsil-derived immune organoids. FOXP3 and GZMB respectively encode proteins FOXP3 and granzyme B, which are critical to the suppressive functions of CD4 and CD8 regulatory T cells. Using CRISPR-Cas9 gene editing, we were able to achieve a reduction of ~90-95% in the expression of these genes.
View Article and Find Full Text PDFGastro Hep Adv
September 2024
Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands.
Background And Aims: Refractory celiac disease type II (RCDII) is characterized by a clonally expanded aberrant cell population in the small intestine. The role of other tissue-resident immune subsets in RCDII is unknown. Here, we characterized CD8 and CD4 T cells in RCDII duodenum at the single-cell level and .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!