ATR-FTIR studies of phospholipid vesicle interactions with alpha-FeOOH and alpha-Fe2O3 surfaces.

Colloids Surf B Biointerfaces

Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali (Di.Va.P.R.A.), Università degli Studi di Torino, 44 via Leonardo da Vinci, Grugliasco (Torino), Italy I-10095.

Published: April 2010

Prior infrared spectroscopic studies of extracellular polymeric substances (EPS) and live bacterial cells have indicated that organic phosphate groups mediate cell adhesion to iron oxides via inner-sphere P-OFe surface complexation. Since cell membrane phospholipids are a potential source of organic phosphate groups, we investigated the adhesion of phospholipidic vesicles to the surfaces of the iron (oxyhydr)oxides goethite (alpha-FeOOH) and hematite (alpha-Fe2O3) using attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy. l-alpha-phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidic acid (PA) were used because they are vesicle forming phospholipids representative of prokaryotic and eukaryotic cell surface membranes. Phospholipid vesicles, formed in aqueous suspension, were characterized by transmission electron microscopy (TEM), multi-angle laser light scattering (MALS) and quasi-elastic light scattering (QELS). Their adhesion to goethite and hematite surfaces was studied with ATR-FTIR at pH 5. Results indicate that PC and PE adsorption is affected by electrostatic interaction and H-bonding (PE). Conversely, adsorption of PA involves phosphate inner-sphere complexes, for both goethite and hematite, via P-OFe bond formation. Biomolecule adsorption at the interface was observed to occur on the scale of minutes to hours. Exponential and linear increases in peak intensity were observed for goethite and hematite, respectively. Our ATR-FTIR results on the PA terminal phosphate are in good agreement with those on EPS reacted with goethite and on bacterial cell adhesion to hematite. These findings suggest that the plasma membrane, and the PA terminal phosphate in particular, may play a role in mediating the interaction between bacteria and iron oxide surfaces during initial stages of biofilm formation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2009.12.005DOI Listing

Publication Analysis

Top Keywords

goethite hematite
12
organic phosphate
8
phosphate groups
8
cell adhesion
8
light scattering
8
terminal phosphate
8
phosphate
5
goethite
5
hematite
5
atr-ftir
4

Similar Publications

Iron(III) (oxyhydr)oxide minerals with varying particle sizes commonly coexist in natural environments and are susceptible to both chemical and microbial reduction, affecting the fate and mobility of trace elements, nutrients, and pollutants. The size-dependent reduction behavior of iron (oxyhydr)oxides in single and mixed mineral systems remains poorly understood. In this study, we used microbial and mediated electrochemical reduction approaches to investigate the reduction kinetics and extents of goethite and hematite.

View Article and Find Full Text PDF

Chemical weathering processes play a key role in regulating the global climate over geological time scales. Lithium (Li) isotope compositions have proven to be a robust proxy for tracing weathering processes that produce secondary minerals, such as clays and oxides, with a focus often placed on Li adsorption to, or incorporation into, clay minerals. In addition, the interaction between Li and Fe-oxides has long been assumed and discussed based on field observations, but experimental constraints on this process are lacking.

View Article and Find Full Text PDF

Geochemical speciation and activation risks of Cd, Ni, and Zn in soils with naturally high background in karst regions of southwestern China.

J Hazard Mater

January 2025

MOE Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering, Nanjing University, Nanjing, Jiangsu 210023, China. Electronic address:

Agricultural soils in karst regions present a remarkable paradox where high geochemical background levels of heavy metals correspond with unexpectedly low crop uptake, challenging traditional risk assessment frameworks and limiting agricultural development. To decode this paradox, we investigated the geochemical speciation of cadmium (Cd), nickel (Ni), and zinc (Zn) in soil-rice systems in southwestern China, which collectively constitute the world's largest continuous karst region and represent diverse soil weathering stages. We employed three chemical extraction methods that revealed reactive pools ranking as Cd (58.

View Article and Find Full Text PDF
Article Synopsis
  • Environmental DNA (eDNA) interacts differently with mineral surfaces, influencing its stability and behavior in the environment, particularly regarding its use in genetic detection tools.
  • The study focused on herring testes DNA interacting with two iron oxides, α-FeOOH (goethite) and α-FeO (hematite), revealing that DNA adsorption is primarily through its phosphate groups and retains a B-form structure, though with some distortion on α-FeO surfaces.
  • Stability tests showed that the melting temperature of adsorbed DNA varies with the mineral type and changes in pH, highlighting the significance of specific mineral interactions for eDNA stability in environmental conditions.
View Article and Find Full Text PDF

Coal mining produces coal mine waste rock (CMWR), posing significant environmental risks, including acid mine drainage (AMD) if unmanaged. The Jerada Mine in eastern Morocco has accumulated CMWR since it began operations in 1936, with no rehabilitation efforts until 2001. This study assessed the stability of the T08 pile, which has been deposited over five decades across various oxidation zones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!