The SNARE (soluble N-ethylmaleimide-sensitive fusion protein-attachment protein receptor) protein SNAP-25 (25 kDa synaptosome-associated protein) is essential for regulated exocytosis in neuronal and neuroendocrine cells. Whereas the majority of SNARE proteins contain transmembrane domains, SNAP-25 is instead anchored to membranes by the palmitoylation of a central cysteine-rich region. In this review, we discuss the mechanisms of SNAP-25 palmitoylation and how this modification regulates the intracellular trafficking and exocytotic function of this essential protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/BST0380163 | DOI Listing |
J Biol Chem
November 2024
Department of Biochemistry & Molecular Biology, University of Massachusetts, Amherst Massachusetts, USA; Department of Chemistry, University of Massachusetts, Amherst Massachusetts, USA. Electronic address:
The complex mechanism of synaptic vesicle fusion with the plasma membrane for neurotransmitter release is initiated by the formation of the SNARE complex at the presynaptic terminal of the neuron. The SNARE complex is composed of four helices contributed by three proteins: one from syntaxin (localized at the plasma membrane), one from synaptobrevin (localized at the synaptic vesicle), and two from the intrinsically disordered and aggregation-prone synaptosomal-associated 25 kDa protein (SNAP-25), which is localized to the plasma membrane by virtue of palmitoylation of cysteine residues. The fusion process is tightly regulated and requires the constitutively expressed Hsp70 chaperone (Hsc70) and its J-protein co-chaperone CSPα.
View Article and Find Full Text PDFInt J Mol Sci
July 2024
Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Spain.
Cell Commun Signal
July 2024
Universitat Rovira i Virgili. Unitat d'Histologia i Neurobiologia (UHNeurob), Facultat de Medicina i Ciències de la Salut. c/ Sant Llorenç 21, Reus, 43201, Spain.
Background: Protein kinase A (PKA) enhances neurotransmission at the neuromuscular junction (NMJ), which is retrogradely regulated by nerve-induced muscle contraction to promote Acetylcholine (ACh) release through the phosphorylation of molecules involved in synaptic vesicle exocytosis (SNAP-25 and Synapsin-1). However, the molecular mechanism of the retrograde regulation of PKA subunits and its targets by BDNF/TrkB pathway and muscarinic signalling has not been demonstrated until now. At the NMJ, retrograde control is mainly associated with BDNF/TrkB signalling as muscle contraction enhances BDNF levels and controls specific kinases involved in the neurotransmission.
View Article and Find Full Text PDFNeuroscience
August 2024
Psychological Neuroscience Laboratory, Psychology Research Centre (CIPsi), School of Psychology, University of Minho, Braga, Portugal. Electronic address:
Early life stress may lead to lifelong impairments in psychophysiological functions, including emotional and reward systems. Unpredicted decrease in reward magnitude generates a negative emotional state (frustration) that may be involved with susceptibility to psychiatric disorders. We evaluated, in adolescents and adult rats of both sexes, whether maternal separation (MS) alters the ability to cope with an unexpected reduction of reward later in life.
View Article and Find Full Text PDFBMC Vet Res
July 2024
College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
Background: The neuroimmune network plays a crucial role in regulating mucosal immune homeostasis within the digestive tract. Synaptosome-associated protein 25 (SNAP-25) is a presynaptic membrane-binding protein that activates ILC2s, initiating the host's anti-parasitic immune response.
Methods: To investigate the effect of Moniezia benedeni (M.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!