Fifteen years of APC/cyclosome: a short and impressive biography.

Biochem Soc Trans

Department of Genetics, The Silberman Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel.

Published: February 2010

The APC/C (anaphase-promoting complex/cyclosome) discovered exactly 15 years ago by Avram Heshko and Marc Kirschner is by far the most complex ubiquitin ligase discovered so far. The APC/C is composed of roughly a dozen subunits and measures a massive 1.5 MDa. This huge complex, as well as its multiple modes of regulation, boasts impressive evolutionary conservation. One of its most puzzling features is its split personality: regulation of mitotic exit events on the one hand, and its ongoing activity during G(1)-phase, G(0)-phase and in terminally differentiated cells. The present short review is intended to provide a basic description of our current understanding of the APC/C, focusing on recent findings concerning its role in G(1)-phase and in differentiated cells.

Download full-text PDF

Source
http://dx.doi.org/10.1042/BST0380078DOI Listing

Publication Analysis

Top Keywords

differentiated cells
8
fifteen years
4
years apc/cyclosome
4
apc/cyclosome short
4
short impressive
4
impressive biography
4
biography apc/c
4
apc/c anaphase-promoting
4
anaphase-promoting complex/cyclosome
4
complex/cyclosome discovered
4

Similar Publications

Nucleotide-binding oligomerization domain protein 1 (NOD1) is one of the innate immune receptors that has been associated with tumorigenesis and abnormally expressed in various cancers. However, the role of NOD1 in Glioblastoma Multiforme (GBM) has not been investigated. We used the Tumor Immune Estimate Resource (TIMER) database to compare the differential expression of NOD1 in various tumors.

View Article and Find Full Text PDF

Stroke is the second-leading global cause of death. The damage attributed to the immune storm triggered by ischemia-reperfusion injury (IRI) post-stroke is substantial. However, data on the transcriptomic dynamics of pyroptosis in IRI are limited.

View Article and Find Full Text PDF

Unraveling the potential mechanism and prognostic value of pentose phosphate pathway in hepatocellular carcinoma: a comprehensive analysis integrating bulk transcriptomics and single-cell sequencing data.

Funct Integr Genomics

January 2025

Institute of Infectious Diseases, Guangdong Province, Guangzhou Eighth People's Hospital, Guangzhou Medical University, 8 Huaying Road, Baiyun District, Guangzhou, 510440, China.

Hepatocellular carcinoma (HCC) remains a malignant and life-threatening tumor with an extremely poor prognosis, posing a significant global health challenge. Despite the continuous emergence of novel therapeutic agents, patients exhibit substantial heterogeneity in their responses to anti-tumor drugs and overall prognosis. The pentose phosphate pathway (PPP) is highly activated in various tumor cells and plays a pivotal role in tumor metabolic reprogramming.

View Article and Find Full Text PDF

IL-33, a neutrophil extracellular trap-related gene involved in the progression of diabetic kidney disease.

Inflamm Res

January 2025

Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.

Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.

View Article and Find Full Text PDF

IL-27 is structurally an immune-enhancing and pleiotropic two-chain cytokine associated with IL-12 and IL-6 families. IL-27 contains two subunits, namely IL-27p28 and EBI3. A heterodimer receptor of IL-27, composed of IL27Rα (WSX1) and IL6ST (gp130) chains, mediates the IL-27 function following the activation of STAT1 and STAT3 signaling pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!