Tauopathies are a heterogeneous group of neurodegenerative dementias involving perturbations in the levels, phosphorylation, or mutations of the microtubule-binding protein Tau. The heterogeneous pathology in humans and model organisms suggests differential susceptibility of neuronal types to wild-type (WT) and mutant Tau. WT and mutant human Tau-encoding transgenes expressed pan-neuronally in the Drosophila CNS yielded specific and differential toxicity in the embryonic neuroblasts that generate the mushroom body (MB) neurons, suggesting cell type-specific effects of Tau in the CNS. Frontotemporal dementia with parkinsonism-17-linked mutant isoforms were significantly less toxic in MB development. Tau hyperphosphorylation was essential for these MB aberrations, and we identified two novel putative phosphorylation sites, Ser(238) and Thr(245), on WT hTau essential for its toxic effects on MB integrity. Significantly, blocking putative Ser(238) and Thr(245) phosphorylation yielded animals with apparently structurally normal but profoundly dysfunctional MBs, because animals accumulating this mutant protein exhibited strongly impaired associative learning. Interestingly, the mutant protein was hyperphosphorylated at epitopes typically associated with toxicity and neurodegeneration, such as AT8, AT100, and the Par-1 targets Ser(262) and Ser(356), suggesting that these sites in the context of adult intact MBs mediate dysfunction and occupation of these sites may precede the toxicity-associated Ser(238) and Thr(245) phosphorylation. The data support the notion that phosphorylation at particular sites rather than hyperphosphorylation per se mediates toxicity or dysfunction in a cell type-specific manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6632986PMC
http://dx.doi.org/10.1523/JNEUROSCI.1490-09.2010DOI Listing

Publication Analysis

Top Keywords

ser238 thr245
12
effects tau
8
cell type-specific
8
phosphorylation sites
8
thr245 phosphorylation
8
mutant protein
8
tau
5
phosphorylation
5
mutant
5
differential effects
4

Similar Publications

Hyperphosphorylated Tau protein is the main component of the neurofibrillary tangles, characterizing degenerating neurons in Alzheimer's disease and other Tauopathies. Expression of human Tau protein in Drosophila CNS results in increased toxicity, premature mortality and learning and memory deficits. Herein we use novel transgenic lines to investigate the contribution of specific phosphorylation sites previously implicated in Tau toxicity.

View Article and Find Full Text PDF

The heterogeneous pathology of tauopathies and the differential susceptibility of different neuronal types to WT (wild-type) and mutant tau suggest that phosphorylation at particular sites rather than hyperphosphorylation mediates toxicity or dysfunction in a cell-type-specific manner. Pan-neuronal accumulation of tau in the Drosophila CNS (central nervous system) specifically affected the MBs (mushroom body neurons), consistent with neuronal type-specific effects. The MB aberrations depended, at least in part, on occupation of two novel phosphorylation sites: Ser(238) and Thr(245).

View Article and Find Full Text PDF

Tauopathies are a heterogeneous group of neurodegenerative dementias involving perturbations in the levels, phosphorylation, or mutations of the microtubule-binding protein Tau. The heterogeneous pathology in humans and model organisms suggests differential susceptibility of neuronal types to wild-type (WT) and mutant Tau. WT and mutant human Tau-encoding transgenes expressed pan-neuronally in the Drosophila CNS yielded specific and differential toxicity in the embryonic neuroblasts that generate the mushroom body (MB) neurons, suggesting cell type-specific effects of Tau in the CNS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!