The integral membrane protein bacterioopsin, found in the extremely halophilic archaebacterium Halobacterium halobium, was expressed in Escherichia coli as a fusion protein containing 13 heterologous amino acids at the amino terminus. The expressed protein was localized primarily to the E. coli cytoplasmic membrane (greater than 80%) and had an in vivo half-life of 26 min. The amount of bacterioopsin in E. coli crude lysates was quantitated immunologically from Western blots and was expressed at 10-20-fold higher levels than seen previously (i.e., 17 mg/L; 5.6% of the total protein). Three distinct forms of the protein were detected immunologically: two of the forms were generated by the removal of either one or four amino acid residues at the amino terminus; the third form remained unaltered.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi00226a015DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
amino terminus
8
protein
5
wild-type mutant
4
mutant bacterioopsins
4
bacterioopsins d85n
4
d85n d96n
4
d96n r82q
4
r82q high-level
4
high-level expression
4

Similar Publications

Purpose: Asparaginase (ASN) is a critical component of pediatric ALL protocols. Until recently, ASN was available in three formulations: native Escherichia coli, PEGylated E. coli (PEG), and Erwinase, with native E.

View Article and Find Full Text PDF

Caspase family proteases and Toll/interleukin-1 receptor (TIR)-domain proteins have central roles in innate immunity and regulated cell death in humans. We describe a bacterial immune system comprising both a caspase-like protease and a TIR-domain protein. We found that the TIR protein, once it recognizes phage invasion, produces the previously unknown immune signaling molecule adenosine 5'-diphosphate-cyclo[N7:1'']-ribose (N7-cADPR).

View Article and Find Full Text PDF

Bacterial polysaccharide synthesis is catalysed on the universal lipid carrier, undecaprenol phosphate (UndP). The cellular UndP pool is shared by different polysaccharide synthesis pathways including peptidoglycan biogenesis. Disruptions in cytosolic polysaccharide synthesis steps are detrimental to bacterial survival due to effects on UndP recycling.

View Article and Find Full Text PDF

Increasing the robustness of Escherichia coli for aromatic chemicals production through transcription factor engineering.

Adv Biotechnol (Singap)

April 2024

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.

Engineering microbial cell factories has been widely used to produce a variety of chemicals, including natural products, biofuels, and bulk chemicals. However, poor robustness limits microbial production on an industrial scale. Microbial robustness is essential to ensure reliable and sustainable production of targeted chemicals.

View Article and Find Full Text PDF

A plasmid with the gene enhances the fitness of strains under laboratory conditions.

Microbiology (Reading)

January 2025

Instituto de Microbiologa, Colegio de Ciencias Biolgicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.

Antimicrobial resistance (AMR) is a major threat to global public health that continues to grow owing to selective pressure caused by the use and overuse of antimicrobial drugs. Resistance spread by plasmids is of special concern, as they can mediate a wide distribution of AMR genes, including those encoding extended-spectrum -lactamases (ESBLs). The CTX-M family of ESBLs has rapidly spread worldwide, playing a large role in the declining effectiveness of third-generation cephalosporins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!