The influence of electrode size on selectivity and comfort in transcutaneous electrical stimulation of the forearm.

IEEE Trans Neural Syst Rehabil Eng

Automatic Control Laboratory, ETH Zurich, 8092 Zurich, Switzerland.

Published: June 2010

Transcutaneous electrical stimulation (TES) is a technique to artificially activate motor nerves and muscles. It can be used for rehabilitation or the restoration of lost motor functions, e.g., in subjects with brain or spinal cord lesions. Apart from selectively activating motor nerves and muscles, TES activates sensory fibers and pain receptors, producing discomfort and pain. Clinicians try to minimize discomfort by optimizing stimulation parameters, electrode location, and electrode size. There are some studies that found optimal electrode sizes for certain stimulation sites (e.g., gastrocnemius), however the underlying effects why certain electrode sizes are preferred by patients is not well understood. We used a TES model consisting of a finite element (FE) model and a nerve model to assess the influence of different electrode sizes on the selectivity and the perceived comfort for various anatomies. Motor thresholds calculated using the TES model were compared with motor thresholds that were obtained from measurements performed on the forearm of ten human volunteers. Results of the TES model indicate that small electrodes (0.8 x 0.8 cm(2)) are more comfortable for thin fat layers (0.25 cm) and superficial nerves (0.1 cm) and larger electrodes (4.1 x 4.1 cm(2)) are more comfortable for thicker fat layers (2 cm) and deeper nerves (1.1 cm) at a constant recruitment.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2009.2039807DOI Listing

Publication Analysis

Top Keywords

electrode sizes
12
tes model
12
influence electrode
8
electrode size
8
transcutaneous electrical
8
electrical stimulation
8
motor nerves
8
nerves muscles
8
motor thresholds
8
electrodes cm2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!