Interleukin (IL)-23 is a heterodimeric cytokine composed of the IL-23-specific subunit p19 and the p40 subunit which also constitutes part of IL-12. IL-23 propagates development of Th17 cells, a novel T cell subset which produces IL-17 but no interferon-gamma or IL-4. For both, IL-23 and IL-23-driven IL-17, a crucial role in autoimmune diseases such as experimental autoimmune encephalomyelitis, collagen-induced arthritis, and colitis is well accepted. Recent studies indicate that there is also a role for IL-23 and IL-17 in tumorigenesis, promoting tumor growth and vascularization, and affecting tumor incidence. We show that human CD14(+) peripheral blood monocyte-derived dendritic cells (DC), as used for clinical applications in anti-tumor immunization strategies, produce high amounts of IL-23. CD40-triggering of immature and mature DC but not of primary monocytes induced a rapid expression of high levels of IL-23, free p40, and minor levels of IL-12. Upon stimulation of DC subsets with a variety of different danger signals such as single stranded and double stranded RNA, bacterial components or viral infections, IL-23 expression pattern was analyzed. Interestingly, co-stimulation with CD40L enabled IL-23 expression by DC subsets towards danger signals to which they have been unresponsive upon single stimulation. Furthermore, we detected two novel splice variants of the IL-23-specific subunit p19 that could be associated with the regulation of IL-23 expression. Data presented here might have an impact on DC-based cancer vaccination strategies and contribute to a better understanding of the complex regulation of the heterodimeric cytokine IL-23.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molimm.2009.12.008DOI Listing

Publication Analysis

Top Keywords

danger signals
12
il-23 expression
12
il-23
10
dendritic cells
8
heterodimeric cytokine
8
il-23-specific subunit
8
subunit p19
8
cd40 ligand-triggered
4
ligand-triggered human
4
human dendritic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!