Keratinocyte growth factor (KGF; also known as FGF-7) is a well-characterized paracrine growth factor for tissue growth and regeneration. However, its role in adipose tissue, which is known to undergo tremendous expansion in obesity, is virtually unknown. Given that we previously identified KGF as one of the up-regulated growth factors in adipose tissue of an early-life programmed rat model of visceral obesity, the present study was undertaken to examine the hypothesis that KGF promotes adipogenesis. Using 3T3-L1 and rat primary preadipocytes as in vitro model systems, we demonstrated that (1) KGF stimulated preadipocyte proliferation in a concentration-dependent manner with a maximal effect at 2.5 ng/ml (approximately 2-fold increase); (2) KGF mRNA was highly expressed in rat adipocytes and preadipocytes as well as 3T3-L1 cells; (3) treatment of preadipocytes with a neutralizing antibody against KGF and siRNA-mediated knockdown of KGF led to a 50% reduction in their proliferative capacity; (4) KGF activated the protein kinase Akt, and the PI3 kinase inhibitor LY294002 blocked KGF stimulation of preadipocyte proliferation; and (5) KGF did not promote differentiation of preadipocytes to mature adipocytes. Together, these results reveal adipocytes and their precursor cells as novel sites of KGF production. Importantly, they also demonstrate that KGF promotes preadipocyte proliferation by an autocrine mechanism that involves activation of the PI3K/Akt signaling pathway. Aberrant KGF expression may have consequences not only for normal adipose tissue growth but also for the pathogenesis of obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.22452 | DOI Listing |
Aesthet Surg J Open Forum
November 2024
Adipose tissue, or fat compartments, has long been considered a storage depot and an energy source. However, a large part of new research, starting with the discovery of adipose-derived stem cells, has redirected this thinking toward the tremendous regenerative capacity that adipose tissue possesses when it is healthy. This has resulted in multiple technologies being explored with fat as a basis or with fat as a target aiming at the stimulation of new small hyperplastic adipose cells exuding adipokines and encouraging the proliferation of a whole host of progenitor cells that can have positive effects on many organ systems.
View Article and Find Full Text PDFFront Vet Sci
December 2024
College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.
Background: The fat tail of sheep is an adaptive trait that facilitates their adaptation to harsh natural environments. MicroRNAs (miRNAs) have been demonstrated to play crucial roles in the regulation of tail fat deposition.
Methods: In this study, miRNA-Seq was employed to investigate the expression profiles of miRNAs during different developmental stages of sheep fat tails and elucidate the functions of differentially expressed miRNAs (DE miRNAs).
Animals (Basel)
December 2024
College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China.
MicroRNAs play essential roles in biological processes by regulating gene expression at the post-transcriptional level. Our previous studies suggested the role of miR-26a in porcine fat accumulation. Here, through gain- and loss-of-function analyses, we first showed that miR-26a increased the proliferation of porcine preadipocytes by promoting cell division and that miR-26a inhibited the preadipocyte differentiation.
View Article and Find Full Text PDFInt J Nanomedicine
December 2024
Tecnologico de Monterrey, Institute for Obesity Research, Monterrey, México.
Introduction: Disulfiram (DSF) reduces insulin resistance and weight gain in obese mice. However, the effect on adipose tissue is unexplored due to their high instability under physiological conditions, limiting clinical applications. Thus, it is meaningful to develop a DSF carrier for sustained release to adipose tissue.
View Article and Find Full Text PDFJ Lipid Res
December 2024
Frontiers Science Center for Molecular Design Breeding (MOE), China Agricultural University, Beijing 100193, China; State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing 100193, China. Electronic address:
Adipose tissue, an important organ involved in energy metabolism and endocrine, is closely related to animal meat quality and human health. Transient receptor potential channel 1 (TRPC1), an ion transporter, is adipocytes' major Ca entry channel. However, its function in fat deposition is poorly understood, particularly in pigs, which are both an ideal model for human obesity research and a primary meat source for human diets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!