A spectrophone measures absorptivity by sensing thermal expansion in a confined sample gas. Laser source excitation provides sufficient radiation to measure precisely very weak absorptivities at laser wavelengths. This paper describes the theoretical capability, design considerations, and experimental testing of a pulsed ruby laser absorptivity spectrophone and a cw CO(2) laser absorptivity spectrophone. A spectrum of the water vapor line at 6943.8 A was obtained. The peak absorptivity was 3 x 10(-6)cm(-1). In the vicinity of 9.6 micro, absorptivities of CO(2)-N(2) mixtures were measured down to 1.2 x 10(-7)cm(-1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.7.000915 | DOI Listing |
Anal Chem
January 2025
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, Liaoning 116024, China.
A highly sensitive trace gas sensing system based on carbon black absorption enhanced photoacoustic (PA) spectroscopy (PAS) is reported. A carbon black sheet and a fiber-optic cantilever microphone (FOCM) are integrated to form a fiber-optic cantilever spectrophone (FOCS). The gas concentration is obtained by measuring the acoustic wave amplitude generated by the carbon black sheet, which absorbs the laser passing through the interest gas.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian 116024, Liaoning, China.
A cantilever-enhanced fiber-optic photoacoustic (PA) spectrophone is reported for trace gas detection at a low-pressure environment. A cantilever-based fiber-optic Fabry-Perot (F-P) interferometer (FPI) is utilized for simultaneous measurement of air pressure and PA pressure. Since the cantilever resonance frequency follows air pressure linearly, the fundamental frequency intensity modulation (1-IM) technique is applied to scan the frequency response of the solid PA signal from tube wall absorption for tracking the cantilever resonance frequency in real time.
View Article and Find Full Text PDFPhotoacoustics
October 2024
Wuhan National Laboratory for Optoelectronics (WNLO) and National Engineering Research Center of Next Generation Internet Access-system, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China.
A proof-of-concept on-beam tuning-fork-enhanced photoacoustic sensor based on an open-closed single-tube acoustic-microresonator (AmR) was proposed and investigated for the first time, to the best of our knowledge. Due to the high acoustic amplification effect, the open-closed AmR improved the detection sensitivity by 54 times with respect to the bare tuning fork (TF). Compared to traditional dual-tube/single-tube on-beam spectrophone configuration, the developed approach significantly facilitates the laser beam alignment and reduces the sensor size and gas consumption.
View Article and Find Full Text PDFPhotoacoustics
December 2024
ASI Agenzia Spaziale Italiana - Centro di Geodesia Spaziale, Località Terlecchia, Matera, 75100, Italy.
Nowadays, the scientific community and industry are increasingly pressed to provide solutions for developing compact and highly-performing trace-gas sensors for several applications of crucial importance, such as environmental monitoring or medical diagnostics. In this context, this work describes a novel configuration, making use of a mid-IR spectrophone combining the compactness of a photo-acoustic setup, a non-conventional micro-electro-mechanical (MEMS) acousto-to-voltage transducer, and the sensitivity enhancement given by a cost-effective and easy-to-build dual-tube resonator configuration. In the optimal condition of sample pressure, the system developed in this work can achieve a minimum detection limit (MDL) equal to 0.
View Article and Find Full Text PDFPhotoacoustics
October 2024
Taizhou Hospital, Zhejiang University, Taizhou, China.
Hydrocarbon gas sensing is a challenging task using laser absorption spectroscopy due to the complex and broad structure of absorption lines. This application requires quick, accurate and highly sensitive detection of hydrocarbon gases concentrations. In this paper, a compact photoacoustic spectrophone was developed to simultaneously measure methane, propane and isobutane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!