Targeting Polo-like kinase in cancer therapy.

Clin Cancer Res

Cancer Metabolism Drug Discovery Unit, GlaxoSmithKline, Collegeville, Pennsylvania, USA.

Published: January 2010

Polo-like kinases (Plk) function in mitosis and maintaining DNA integrity. There are four family members, of which Plk1 represents a target for anticancer therapy. Plk1 is only expressed in dividing cells with peak expression during G2/M. Plk1 functions in multiple steps of mitosis, and is overexpressed in many tumor types. Mitotic arrest and inhibition of proliferation, apoptosis, and tumor growth inhibition have been observed in preclinical studies using small interfering RNAs (siRNA) or small molecules that inhibit Plk1. Preclinical studies also show that Plk1 inhibitors may be active against tumors with RAS mutations and that tumor cells with mutations in TP53 are more sensitive to inhibition of Plk1. Several Plk inhibitors are in phase I or II clinical studies. As expected, hematologic toxicity is the primary dose-limiting toxicity. Some patients have achieved clinical response, although in some studies only at doses above the maximum tolerated dose defined in the study. Further evaluation is necessary to discern the clinical utility of Plk1 inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1158/1078-0432.CCR-09-1380DOI Listing

Publication Analysis

Top Keywords

preclinical studies
8
plk1 inhibitors
8
plk1
7
targeting polo-like
4
polo-like kinase
4
kinase cancer
4
cancer therapy
4
therapy polo-like
4
polo-like kinases
4
kinases plk
4

Similar Publications

Background: HIV and tuberculosis (TB) co-infection poses a significant health challenge, particularly when involving the central nervous system (CNS), where it leads to severe morbidity and mortality. Current treatments face challenges such as drug resistance, immune reconstitution inflammatory syndrome (IRIS), and persistent inflammation. Glutathione (GSH) has the therapeutic potential to enhance treatment outcomes by improving antibiotic efficacy, reducing inflammation, and mitigating immune dysfunction.

View Article and Find Full Text PDF

Curcumin, a bioactive compound derived from the rhizome of L., has garnered significant attention for its potent anticancer properties. Despite its promising therapeutic potential, its poor bioavailability, rapid metabolism, and low water solubility hinder curcumin's clinical application.

View Article and Find Full Text PDF

This in vivo study introduces a newly developed spirooxindole derivative that is deemed safe and effective as a potential targeted therapy for various cancers. Extensive in vivo investigations, including histopathology, immunohistochemistry, and molecular biology, validated its potential for further preclinical and clinical exploration, necessitating comprehensive examinations of its bioavailability, pharmacodynamics, and pharmacokinetics. Additionally, this study involves the development of a commercially viable proniosomal drug delivery system for the compound, facilitating controlled drug release.

View Article and Find Full Text PDF

Liposomal Formulation of Hydroxychloroquine Can Inhibit Autophagy In Vivo.

Pharmaceutics

December 2024

Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada.

Preclinical studies have shown that the anti-malarial drug hydroxychloroquine (HCQ) improves the anti-cancer effects of various therapeutic agents by impairing autophagy. These findings are difficult to translate in vivo as reaching an effective HCQ concentration at the tumor site for extended times is challenging. Previously, we found that free HCQ in combination with gefitinib (Iressa, ZD1839) significantly reduced tumor volume in immunocompromised mice bearing gefitinib-resistant JIMT-1 breast cancer xenografts.

View Article and Find Full Text PDF

Liposomal Formulations: A Recent Update.

Pharmaceutics

December 2024

Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India.

Liposome-based drug delivery technologies have showed potential in enhancing medication safety and efficacy. Innovative drug loading and release mechanisms highlighted in this review of next-generation liposomal formulations. Due to poor drug release kinetics and loading capacity, conventional liposomes have limited clinical use.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!