AI Article Synopsis

  • The study identifies a new neuropeptide named ACP, which is related to known insect neuropeptides (AKHs and corazonins) but represents an independent signaling system.
  • Using cell culture experiments, the researchers discovered that ACP activates its own receptor, which does not respond to AKHs or corazonins, highlighting the uniqueness of this signaling system.
  • The ACP system is present in various insect species but absent in certain others, suggesting a complex evolutionary history with possible gene duplications and speciation events leading to distinct hormonal systems.

Article Abstract

Neuropeptides and their G protein-coupled receptors (GPCRs) play a central role in the physiology of insects. One large family of insect neuropeptides are the adipokinetic hormones (AKHs), which mobilize lipids and carbohydrates from the insect fat body. Other peptides are the corazonins that are structurally related to the AKHs but represent a different neuropeptide signaling system. We have previously cloned an orphan GPCR from the malaria mosquito Anopheles gambiae that was structurally intermediate between the A. gambiae AKH and corazonin GPCRs. Using functional expression of the receptor in cells in cell culture, we have now identified the ligand for this orphan receptor as being pQVTFSRDWNAamide, a neuropeptide that is structurally intermediate between AKH and corazonin and that we therefore named ACP (AKH/corazonin-related peptide). ACP does not activate the A. gambiae AKH and corazonin receptors and, vice versa, AKH and corazonin do not activate the ACP receptor, showing that the ACP/receptor couple is an independent and so far unknown peptidergic signaling system. Because ACP is structurally intermediate between AKH and corazonin and the ACP receptor between the AKH and corazonin receptors, this is a prominent example of receptor/ligand co-evolution, probably originating from receptor and ligand gene duplications followed by mutations and evolutionary selection, thereby yielding three independent hormonal systems. The ACP signaling system occurs in the mosquitoes A. gambiae, Aedes aegypti, and Culex pipiens (Diptera), the silkworm Bombyx mori (Lepidoptera), the red flour beetle Tribolium castaneum (Coleoptera), the parasitic wasp Nasonia vitripennis (Hymenoptera), and the bug Rhodnius prolixus (Hemiptera). However, the ACP system is not present in 12 Drosophila species (Diptera), the honeybee Apis mellifera (Hymenoptera), the pea aphid Acyrthosiphon pisum (Hemiptera), the body louse Pediculus humanus (Phthiraptera), and the crustacean Daphnia pulex, indicating that it has been lost several times during arthropod evolution. In particular, this frequent loss of hormonal systems is unique for arthropods compared with vertebrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2856281PMC
http://dx.doi.org/10.1074/jbc.M109.045369DOI Listing

Publication Analysis

Top Keywords

akh corazonin
24
signaling system
16
hormonal systems
12
structurally intermediate
12
neuropeptide signaling
8
gambiae akh
8
intermediate akh
8
corazonin receptors
8
acp receptor
8
corazonin
7

Similar Publications

Endocrine Control of Lipid Metabolism.

Adv Exp Med Biol

May 2024

Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS, USA.

Lipids are essential in insects and play pleiotropic roles in energy storage, serving as a fuel for energy-driven processes such as reproduction, growth, development, locomotion, flight, starvation response, and diapause induction, maintenance, and termination. Lipids also play fundamental roles in signal transduction, hormone synthesis, forming components of the cell membrane, and thus are essential for maintenance of normal life functions. In insects, the neuroendocrine system serves as a master regulator of most life activities, including growth and development.

View Article and Find Full Text PDF

The tick Ixodes scapularis has five different GPCRs specifically activated by ACP (adipokinetic hormone/corazonin-related peptide).

Biochem Biophys Res Commun

July 2024

Section for Cell and Neurobiology, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.

Insects have about 50 neuropeptide genes and about 70 genes, coding for neuropeptide G protein-coupled receptors (GPCRs). An important, but small family of evolutionarily related insect neuropeptides consists of adipokinetic hormone (AKH), corazonin, and AKH/corazonin-related peptide (ACP). Normally, insects have one specific GPCR for each of these neuropeptides.

View Article and Find Full Text PDF

Neuropeptides are the main regulators of physiological, developmental, and behavioural processes in insects. Three insect neuropeptide systems, the adipokinetic hormone (AKH), corazonin (Crz), and adipokinetic hormone/corazonin-related peptide (ACP), and their cognate receptors, are related to the vertebrate gonadotropin (GnRH) system and form the GnRH superfamily of peptides. In the current study, the two signalling systems, AKH and ACP, of the yellow fever mosquito, , were comparatively investigated with respect to ligand binding to their respective receptors.

View Article and Find Full Text PDF

APGW/AKH Precursor from Rotifer Brachionus plicatilis and the DNA Loss Model Explain Evolutionary Trends of the Neuropeptide LWamide, APGWamide, RPCH, AKH, ACP, CRZ, and GnRH Families.

J Mol Evol

December 2023

Grupo de Investigación Computo Avanzado y a Gran Escala (CAGE), Escuela de Ingeniería de Sistemas e Informática, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia.

In the year 2002, DNA loss model (DNA-LM) postulated that neuropeptide genes to emerged through codons loss via the repair of damaged DNA from ancestral gene namely Neuropeptide Precursor Predictive (NPP), which organization correspond two or more neuropeptides precursors evolutive related. The DNA-LM was elaborated according to amino acids homology among LWamide, APGWamide, red pigment-concentrating hormone (RPCH), adipokinetic hormones (AKHs) and in silico APGW/RPCH NPPAPGW/AKH NPP were proposed. With the above principle, it was proposed the evolution of corazonin (CRZ), gonadotropin-releasing hormone (GnRH), AKH, and AKH/CRZ (ACP), but any NPP never was considered.

View Article and Find Full Text PDF

Introduction: The proposed evolutionary origins and corresponding nomenclature of bilaterian gonadotropin-releasing hormone (GnRH)-related neuropeptides have changed tremendously with the aid of receptor deorphanization. However, the reclassification of the GnRH and corazonin (CRZ) signaling systems in Lophotrochozoa remains unclear.

Methods: We characterized GnRH and CRZ receptors in the mollusk Pacific abalone, Haliotis discus hannai (Hdh), by phylogenetic and gene expression analyses, bioluminescence-based reporter, Western blotting, substitution of peptide amino acids, in vivo neuropeptide injection, and RNA interference assays.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!