Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Repeat-rich regions such as centromeres receive less attention than their gene-rich euchromatic counterparts because the former are difficult to assemble and analyze. Our objectives were to 1) map all ten centromeres onto the maize genetic map and 2) characterize the sequence features of maize centromeres, each of which spans several megabases of highly repetitive DNA. Repetitive sequences can be mapped using special molecular markers that are based on PCR with primers designed from two unique "repeat junctions". Efficient screening of large amounts of maize genome sequence data for repeat junctions, as well as key centromere sequence features required the development of specific annotation software.
Results: We developed JunctionViewer to automate the process of identifying and differentiating closely related centromere repeats and repeat junctions, and to generate graphical displays of these and other features within centromeric sequences. JunctionViewer generates NCBI BLAST, WU-BLAST, cross_match and MUMmer alignments, and displays the optimal alignments and additional annotation data as concise graphical representations that can be viewed directly through the graphical interface or as PostScript output.This software enabled us to quickly characterize millions of nucleotides of newly sequenced DNA ranging in size from single reads to assembled BACs and megabase-sized pseudochromosome regions. It expedited the process of generating repeat junction markers that were subsequently used to anchor all 10 centromeres to the maize map. It also enabled us to efficiently identify key features in large genomic regions, providing insight into the arrangement and evolution of maize centromeric DNA.
Conclusions: JunctionViewer will be useful to scientists who wish to automatically generate concise graphical summaries of repeat sequences. It is particularly valuable for those needing to efficiently identify unique repeat junctions. The scalability and ability to customize homology search parameters for different classes of closely related repeat sequences make this software ideal for recurring annotation (e.g., genome projects that are in progress) of genomic regions that contain well-defined repeats, such as those in centromeres. Although originally customized for maize centromere sequence, we anticipate this software to facilitate the analysis of centromere and other repeat-rich regions in other organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2824676 | PMC |
http://dx.doi.org/10.1186/1471-2105-11-23 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!