Hydrogels that degrade at different rates were prepared by copolymerizing slowly degrading macromer poly(ethylene glycol) (PEG) dimethacrylate with a faster degrading macromer poly(lactic acid)-b-PEG-b-poly(lactic acid) dimethacrylate. A clinically relevant population of neural cells composed of differentiated neurons and multipotent precursor cells was cultured within hydrogels. Within 2 h after encapsulation, metabolic activity was higher in hydrogels prepared with increasing levels of degradable content. This improvement was accompanied by a reduction in intracellular redox state and an increase in the fraction of glutathione in the reduced state, both of which persisted throughout 7 days of culture and which may be the result of radical scavenging by lactic acid. Importantly, an increase in cellular proliferation was observed in gels prepared with increasing degradable macromer content after 7 days of growth without a shift in the cellular composition of the culture toward the glial cell phenotype. The findings of this study provide additional insight into the growth of neural cells in PEG-based hydrogels. Results suggest that lactic acid released during gel degradation may impact the function of encapsulated cells, a finding of general interest to biomaterials scientists who focus on the development of degradable polymers for cell culture and drug delivery devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949233 | PMC |
http://dx.doi.org/10.1089/ten.TEA.2009.0509 | DOI Listing |
Adv Healthc Mater
January 2025
Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA.
Anterior cervical spine surgeries are often complicated by difficulty swallowing due to local postoperative swelling, pain, scarring, and tissue dysfunction. These postoperative events lead to systemic steroid and narcotic use. Local, sustained drug delivery may address these problems, but current materials are unsafe for tight surgical spaces due to high biomaterial swelling, especially upon degradation.
View Article and Find Full Text PDFPharmaceutics
December 2024
Scientific and Educational Center of Pharmaceutics, Kazan (Volga Region) Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia.
The combination of macroporous cryogels with synthetic peptide factors represents a promising but poorly explored strategy for the development of extracellular matrix (ECM)-mimicking scaffolds for peripheral nerve (PN) repair. In this study, IKVAV peptide was functionalized with terminal lysine residues to allow its in situ cross-linking with gelatin macromer, resulting in the formation of IKVAV-containing proteinaceous cryogels. The controllable inclusion and distribution of the peptide molecules within the scaffold was verified using a fluorescently labelled peptide counterpart.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Food Science and Engineering, Henan University of Technology, Zhengzhou, China. Electronic address:
Effects of wheat bran dietary fiber (WBDF) as a nutritional additive on flour products quality mainly depends on the interaction between WBDF and gluten protein. In this study, the effects and mechanisms of WBDF with different particle sizes and additive amounts on gluten protein aggregation behavior were investigated. The results showed that the addition of WBDF led to a decrease in free sulfhydryl content, particle size, molecular weight and gluten macromer (GMP) content, an increase in zeta potential and SDS-extractable protein content, and a deterioration in the gluten network morphology compared to the control group, suggesting that the aggregation behavior of gluten protein was inhibited.
View Article and Find Full Text PDFBiomaterials
March 2025
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, USA. Electronic address:
This work establishes the design of a fully synthetic, shear-thinning hydrogel platform that is injectable and can isolate engineered, allogeneic cell therapies from the host. We utilized RAFT to generate a library of linear random copolymers of N,N-dimethylacrylamide (DMA) and 2-vinyl-4,4-dimethyl azlactone (VDMA) with variable mol% VDMA and degree of polymerization. Poly(DMA-co-VDMA) copolymers were subsequently modified with either adamantane (Ad) or β-cyclodextrin (Cd) through amine-reactive VDMA to prepare hydrogel precursor macromers containing complementary guest-host pairing pendant groups that, when mixed, form shear-thinning hydrogels.
View Article and Find Full Text PDFRSC Appl Polym
July 2024
Weldon School of Biomedical Engineering, Purdue University West Lafayette IN 47907 USA
Microgels are spherical hydrogels with physicochemical properties ideal for many biomedical applications. For example, microgels can be used as individual carriers for suspension cell culture or jammed/annealed into granular hydrogels with micron-scale pores highly permissive to molecular transport and cell proliferation/migration. Conventionally, laborious optimization processes are often needed to create microgels with different moduli, sizes, and compositions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!