A recently developed hand-held, rectilinear ion trap mass spectrometer, capable of performing in situ analysis, has been evaluated for a variety of environmentally relevant analytes. Different sampling and ionization methods were implemented, demonstrating the considerable versatility of this instrument. A discontinuous (viz. pulsed) atmospheric pressure inlet (DAPI) was used to introduce externally-generated analyte ions. Nitro compounds were ionized by electrosonic spray ionization (ESSI) yielding the protonated and sodiated forms of the molecular ion, as well as fragment ions. The amines 2,2,6,6-tetramethylpiperidine, triethylamine and 2,6-diphenylpyridine showed low parts per billion (ppb) detection limits. Vapor phase external ionization was used to examine the chemical warfare simulant dimethyl methylphosphonate and the insect repellant N,N-diethyl-m-toluamide. Membrane introduction mass spectrometry (MIMS) was used as the introduction system for hydrophobic analytes using a selectively permeable (polydimethylsiloxane) membrane placed within the vacuum manifold with subsequent ionization of the thermally desorbed neutral compounds inside the ion trap. MIMS allowed the quantitation of trace levels (a few ppb) of fluorinated compounds in the vapor phase. MIMS was also applied to the quantitation of aqueous polycyclic aromatic hydrocarbons (PAH's) with limits of detection again in the low ppb range for naphthalene, acenaphthene, anthracene and phenanthrene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1255/ejms.1036 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!