The bacterial SmpB-SsrA system is a highly conserved translational quality control mechanism that helps maintain the translational machinery at full capacity. Here we present evidence to demonstrate that the smpB-ssrA genes are required for pathogenesis of Yersinia pestis, the causative agent of plague. We found that disruption of the smpB-ssrA genes leads to reduction in secretion of the type III secretion-related proteins YopB, YopD, and LcrV, which are essential for virulence. Consistent with these observations, the smpB-ssrA mutant of Y. pestis was severely attenuated in a mouse model of infection via both the intranasal and intravenous routes. Most significantly, intranasal vaccination of mice with the smpB-ssrA mutant strain of Y. pestis induced a strong antibody response. The vaccinated animals were well protected against subsequent lethal intranasal challenges with virulent Y. pestis. Taken together, our results indicate that the smpB-ssrA mutant of Y. pestis possesses the desired qualities for a live attenuated cell-based vaccine against pneumonic plague.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2825923 | PMC |
http://dx.doi.org/10.1128/IAI.00976-09 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!