Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Arg-Gly-Asp (RGD) modified doxorubicin-loaded liposomes could improve anticancer effect, and vascular disrupting agents (VDAs) could induce a rapid and selective shutdown of the blood vessels of tumors. We propose that RGD-modified liposomes for co-encapsulation and sequential release of vascular disrupting agent combretastatin A-4 (CA-4) and cytotoxic agent doxorubicin (Dox) could enhance tumor inhibition responses. In this study, we encapsulated Dox and CA-4 in RGD-modified liposomes. The release rate of Dox was proved to be much slower than that of CA-4 in vitro. Flow cytometry and laser confocal scanning microscopy clearly showed that RGD-modification promoted intracellular uptake of liposomal drugs by B16/B16F10 melanoma tumor cells and human umbilical vein endothelial cells (HUVECs). Cytotoxicity assay showed that the IC(50) of RGD-modified liposomes was lower than that of the corresponding unmodified liposomes. Therapeutic benefits were examined on B16F10 melanoma tumors subcutaneously growing in C57BL/6 mice. In vivo study demonstrated that RGD-modified liposomes exhibited the most pronounced tumor regression effect when both CA-4 and Dox were co-encapsulated. These results suggest that the targeted drug delivery system for co-encapsulation of vascular disrupting agents and anticancer agents may be a promising strategy for cancer treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2010.01.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!