Copper-catalyzed cross-coupling of alkyl and aryl Grignard reagents with alkynyl halides.

Angew Chem Int Ed Engl

Department of Chemistry (FRE 3043), CNRS-Université de Paris 13, 74 Rue Marcel Cachin, 93017 Bobigny, France.

Published: February 2010

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.200905816DOI Listing

Publication Analysis

Top Keywords

copper-catalyzed cross-coupling
4
cross-coupling alkyl
4
alkyl aryl
4
aryl grignard
4
grignard reagents
4
reagents alkynyl
4
alkynyl halides
4
copper-catalyzed
1
alkyl
1
aryl
1

Similar Publications

The emergence of RNA viruses driven by global population growth and international trade highlights the urgent need for effective antiviral agents that can inhibit viral replication. Nucleoside analogs, which mimic natural nucleotides, have shown promise in targeting RNA-dependent RNA polymerases (RdRps). Starting from protected 5-iodouridine, we report the synthesis of -substituted-(1,3-diyne)-uridines nucleosides and their phosphoramidate prodrugs.

View Article and Find Full Text PDF

Sulfone motifs play important roles in bioactive compounds and functional materials. The development of efficient methodologies for constructing sulfonyl-containing compounds has thus attracted considerable attention. Here, we introduce a protocol for the preparation of alkyl aryl sulfones under mild conditions.

View Article and Find Full Text PDF

This study introduces a novel methodology for the direct construction of tetrasubstituted centers, utilizing secondary C(sp)-H and C(sp)-H substrates, specifically indolin-2-ones and indoles, through an innovative oxidative cross-coupling reaction. Facilitated by a straightforward copper salt catalyst, this reaction proceeds efficiently at a mild temperature of 40 °C under operationally streamlined conditions. Emphasizing sustainability, this method is notably enhanced by employing air (molecular oxygen) as an eco-friendly oxidant.

View Article and Find Full Text PDF
Article Synopsis
  • The study presents a method using TMSOTf to create spiroketal derivatives through hydroalkoxylation and cycloaddition reactions involving hydroxy cyclopropenes and aldehydes.
  • This process generates a donor-acceptor cyclopropane intermediate, allowing for the efficient synthesis of [5.5]- and [6.5]-spiroketals.
  • The resulting spirocyclic compounds can be further modified to produce complex polycyclic heterocycles through metal halogen exchange and copper-catalyzed reactions, with a decarboxylation step that introduces a fourth chiral center.
View Article and Find Full Text PDF

We present, for the first time, an efficient ligand-free iron-copper catalyzed cross-coupling reaction involving a variety of aryl, heteroaryl halides (including chlorides, bromides, and iodides), and alkyl bromides with diverse aryl and aliphatic primary amides, conducted under solvent-minimized conditions. This economically competitive protocol successfully yielded the corresponding cross-coupling products, N-arylamides and N-alkylamides, in good to excellent yields with broad substrate scope (65 examples) and tolerance to several sensitive functionalities (including heterocycles). No conventional work-up is required for this protocol, and the developed method is applicable for gram-scale synthesis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!