Malignant primary glial and secondary metastatic brain tumors represent distinct pathological entities. Nevertheless, both tumor types induce profound angiogenic responses in the host brain microvasculature that promote tumor growth. We hypothesized that primary and metastatic tumors induce similar microvascular changes that could function as conserved angiogenesis based therapeutic targets. We previously isolated glioma endothelial marker genes (GEMs) that were selectively upregulated in the microvasculature of proliferating glioblastomas. We sought to determine whether these genes were similarly induced in the microvasculature of metastatic brain tumors. RT-PCR and quantitative RT-PCR were used to screen expression levels of 20 candidate GEMs in primary and metastatic clinical brain tumor specimens. Differentially regulated GEMs were further evaluated by immunohistochemistry or in situ hybridization to localize gene expression using clinical tissue microarrays. Thirteen GEMs were upregulated to a similar degree in both primary and metastatic brain tumors. Most of these genes localize to the cell surface (CXCR7, PV1) or extracellular matrix (COL1A1, COL3A1, COL4A1, COL6A2, MMP14, PXDN) and were selectively expressed by the microvasculature. The shared expression profile between primary and metastatic brain tumors suggests that the molecular pathways driving the angiogenic response are conserved, despite differences in the tumor cells themselves. Anti-angiogenic therapies currently in development for primary brain tumors may prove beneficial for brain metastases and vice versa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904485 | PMC |
http://dx.doi.org/10.1007/s11060-009-0105-0 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!