Cells infected with dengue virus release a high proportion of immature prM-containing virions. In accordance, substantial levels of prM antibodies are found in sera of infected humans. Furthermore, it has been recently described that the rates of prM antibody responses are significantly higher in patients with secondary infection compared to those with primary infection. This suggests that immature dengue virus may play a role in disease pathogenesis. Interestingly, however, numerous functional studies have revealed that immature particles lack the ability to infect cells. In this report, we show that fully immature dengue particles become highly infectious upon interaction with prM antibodies. We demonstrate that prM antibodies facilitate efficient binding and cell entry of immature particles into Fc-receptor-expressing cells. In addition, enzymatic activity of furin is critical to render the internalized immature virus infectious. Together, these data suggest that during a secondary infection or primary infection of infants born to dengue-immune mothers, immature particles have the potential to be highly infectious and hence may contribute to the development of severe disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2798752 | PMC |
http://dx.doi.org/10.1371/journal.ppat.1000718 | DOI Listing |
J Membr Biol
January 2025
Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, India.
Dengue virus, an arbovirus from the genus Flavivirus in the family Flaviviridae, forms a nucleocapsid structure through interactions between its genome and multiple copies of the capsid protein. Experimental studies have confirmed the interaction between the viral capsid protein and lipid droplets, indicating a protein-lipid interaction. Cryo-EM studies show that in immature viruses, the nucleocapsid is located close to the viral membrane.
View Article and Find Full Text PDFJ Virol
December 2024
Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA.
Unlabelled: Flavivirus envelope (E) and precursor M (prM) proteins, when ectopically expressed, assemble into empty, virus-like particles (VLPs). Cleavage of prM to M and loss of the pr fragment converts the VLPs from immature to mature particles, mimicking a similar maturation of authentic virions. Most of the VLPs obtained by prM-E expression are smaller than virions; early, low-resolution cryo-EM studies suggested a simple, 60-subunit, icosahedral organization.
View Article and Find Full Text PDFParasit Vectors
December 2024
School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P.O.BOX 447, Arusha, Tanzania.
Background: Increased global trade, while beneficial economically, can also increase the spread of vector-borne diseases, particularly those transmitted by Aedes mosquitoes spreading via trade routes. Given the heightened trade-induced activity at ports of entry, it is particularly crucial to assess the risk of mosquito-borne diseases in these settings. This study compared the risks of Aedes-borne disease in and around the eastern Tanzanian seaport of Tanga.
View Article and Find Full Text PDFActa Trop
January 2025
Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Instituto IEGEBA (CONICET-UBA), Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, 4to piso. Laboratorio 54. C1428EHA, Buenos Aires, Argentina.
The performance of Aedes aegypti was evaluated under natural winter nutritional and thermal conditions in the temperate region of Argentina. Immature stages were reared using leaf litter as a food source. The rearing was structured in three cohorts, the first started in late-fall, the second in early-winter and the last in mid-winter, and in each cohort two treatments were arranged according to solar exposure (sun and shade).
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
December 2024
Department of Pediatrics, Federal University of Espírito Santo, Av. Marechal Campos, 1468, Vitória, Brazil.
Background: In 2019, a dengue outbreak involving Aedes albopictus occurred in a rural area of Espírito Santo, Brazil, motivating our study in Sooretama and Linhares.
Methods: We set traps to sample immature mosquito larvae at 40 sites, with weekly inspections from July 2022 to January 2023. Adult specimens were collected monthly at 19 sites, each collection lasting 15 min.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!