Natural IgM antibodies play an important role in the body's defense mechanisms against transformed cells in the human body and are currently being exploited both in prognoses of malignant lesions and in the therapy of cancer patients. However, despite growing interest and clinical promise, thus far the IgM class of antibodies has failed to gain widespread commercial interest as these are considered to be difficult to produce recombinantly. IgMs are polymeric and have a relatively large mass. In addition, IgM molecules are heavily glycosylated and, when produced in non-human cell lines, they may contain non-human glycan structures which may be potentially immunogenic. Clearly, production systems capable of expressing human recombinant IgM antibodies are needed. We have successfully used PER.C6 cells-a human cell line-to generate three separate human recombinant monoclonal IgMs in suspension cultures in protein-free medium. All three of the IgMs were constructed with joining (J) chain and were expressed in the pentameric form. One of the IgMs was also expressed as a hexamer without J chain. Clones with cell specific productivities greater than 20 pg/cell/day were generated, which led to yields of 0.5 g/L to 2g/L in fed-batch production. All the IgMs expressed were biologically active as shown in binding and cytotoxicity assays. These studies demonstrate the potential of PER.C6 cells for the production of high levels of functional recombinant IgM and other polymeric molecules, using a straightforward and rapid stable cell line generation method.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2725415 | PMC |
http://dx.doi.org/10.4161/mabs.1.2.7945 | DOI Listing |
BioDrugs
October 2011
Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA.
The emergence and spread of highly pathogenic avian influenza (H5N1) viruses among poultry in Asia, the Middle East, and Africa have fueled concerns of a possible human pandemic, and spurred efforts towards developing vaccines against H5N1 influenza viruses, as well as improving vaccine production methods. In recent years, promising experimental reverse genetics-derived H5N1 live attenuated vaccines have been generated and characterized, including vaccines that are attenuated through temperature-sensitive mutation, modulation of the interferon antagonist protein, or disruption of the M2 protein. Live attenuated influenza virus vaccines based on each of these modalities have conferred protection against homologous and heterologous challenge in animal models of influenza virus infection.
View Article and Find Full Text PDFHum Gene Ther
February 2003
Genetic Therapy, Inc (A Novartis Company), Gaithersburg, MD 20878, USA.
Adenoviral vectors devoid of all viral coding regions are referred to by many names, including gutless vectors. Gutless vectors display reduced toxicity and immunogenicity, increased duration of transgene expression, and increased coding capacity compared to early generation vectors, which contain the majority of the viral backbone genes. However, the production of gutless vectors at a scale and purity suitable for clinical use has limited the utility of this technology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!