The Drosophila melanogaster genome contains only one CPT1 gene (Jackson, V. N., Cameron, J. M., Zammit, V. A., and Price, N. T. (1999) Biochem. J. 341, 483-489). We have now extended our original observation to all insect genomes that have been sequenced, suggesting that a single CPT1 gene is a universal feature of insect genomes. We hypothesized that insects may be able to generate kinetically distinct variants by alternative splicing of their single CPT1 gene. Analysis of the insect genomes revealed that (a) the single CPT1 gene in each and every insect genome contains two alternative exons and (ii) in all cases, the putative alternative splicing site occurs within a small region corresponding to 21 amino acid residues that are known to be essential for the binding of substrates and of malonyl-CoA in mammalian CPT1A. We performed PCR analyses of mRNA from different Drosophila tissues; both of the anticipated splice variants of CPT1 mRNA were found to be expressed in all of the tissues tested (both in larvae and adults), with the expression level for one of the splice variants being significantly different between flight muscle and the fat body of adult Drosophila. Heterologous expression of the full-length cDNAs corresponding to the two putative variants of Drosophila CPT1 in the yeast Pichia pastoris revealed two important differences between the properties of the two variants: (i) their affinity (K(0.5)) for one of the substrates, palmitoyl-CoA, differed by 5-fold, and (ii) the sensitivity to inhibition by malonyl-CoA at fixed, higher palmitoyl-CoA concentrations was 2-fold different and associated with different kinetics of inhibition. These data indicate that alternative splicing that specifically affects a structurally crucial region of the protein is an important mechanism through which functional diversity of CPT1 kinetics is generated from the single gene that occurs in insects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2832936PMC
http://dx.doi.org/10.1074/jbc.M109.072892DOI Listing

Publication Analysis

Top Keywords

cpt1 gene
20
single cpt1
16
insect genomes
12
alternative splicing
12
cpt1
8
functional diversity
8
variants drosophila
8
drosophila tissues
8
splice variants
8
gene
6

Similar Publications

This study was performed to reveal the metabolic effects and molecular mechanisms that govern the dietary incorporation of clenbuterol on growth performance, haemato-biochemical changes, histological alteration, and gene expression regulating glucose and lipid metabolism in normal and high-fat diets fed in Nile tilapia (Oreochromis niloticus). Six experimental diets were formulated, incorporating different concentrations of clenbuterol. The 1st three groups were supplemented with a diet comprising 6% fat, with clenbuterol of 0, 5, and 10 g/kg diet was designated as F6 clenb0, F6clenb5, and F6clenb10, respectively.

View Article and Find Full Text PDF

To investigate the potential of ferulic acid (FA) in attenuating the deleterious effects of oxidized fish oil (OF) on , four experimental diets were formulated: 3% fresh fish oil (CT group, peroxide value: 2.2 mmol/kg), 3% oxidized fish oil (OF group, peroxide value: 318 mmol/kg), and 3% OF with an additional 160 and 320 mg/kg of FA (OF+FA160 group and OF+FA320 group, respectively). (initial weight: 0.

View Article and Find Full Text PDF

BefA protein alleviates progression of non-alcoholic fatty liver disease by modulating the AMPK signaling pathway through the gut-liver axis.

Int J Biol Macromol

January 2025

Jiangxi Province Key Laboratory of Bioengineering Drugs, School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang 330031, China; National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China. Electronic address:

Non-alcoholic fatty liver disease (NAFLD) is the leading cause of chronic liver diseases worldwide, necessitating urgent novel oral treatments. In this study, β-cell expansion factor A (BefA) was evaluated in a murine NAFLD model induced by high-fat diet (HFD). Our results revealed that BefA significantly reduced body weight (36.

View Article and Find Full Text PDF

The transcriptional repressor HEY2 regulates mitochondrial oxidative respiration to maintain cardiac homeostasis.

Nat Commun

January 2025

Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.

Energy deprivation and metabolic rewiring of cardiomyocytes are widely recognized hallmarks of heart failure. Here, we report that HEY2 (a Hairy/Enhancer-of-split-related transcriptional repressor) is upregulated in hearts of patients with dilated cardiomyopathy. Induced Hey2 expression in zebrafish hearts or mammalian cardiomyocytes impairs mitochondrial respiration, accompanied by elevated ROS, resulting in cardiomyocyte apoptosis and heart failure.

View Article and Find Full Text PDF

Analyses of widely targeted metabolic profiling reveal enhanced energy metabolism in well-developed testicular tissue of Hu sheep.

Domest Anim Endocrinol

December 2024

State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, PR China.

Energy supply is crucial for testicular development. Nevertheless, the specific alterations in the energy metabolic pathways that affect testicular development have not been extensively investigated. This study aimed to investigate the variations in metabolites and alterations in energy metabolic pathways in the testes of Hu sheep with different developmental status at 6 months of age.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!