Atmospheric pollutants in alpine peat bogs record a detailed chronology of industrial and agricultural development on the Australian continent.

Environ Pollut

Climate Research Group, School of Geography, Planning and Environmental Management, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia.

Published: May 2010

Two peat bogs from remote alpine sites in Australia were found to contain detailed and coherent histories of atmospheric metal pollution for Pb, Zn, Cu, Mo, Ag, As, Cd, Sb, Zn, In, Cr, Ni, Tl and V. Dramatic increases in metal deposition in the post-1850 AD portion of the cores coincide with the onset of mining in Australia. Using both Pb isotopes and metals, pollutants were ascribed to the main atmospheric pollution emitting sources in Australia, namely mining and smelting, coal combustion and agriculture. Results imply mining and metal production are the major source of atmospheric metal pollution, although coal combustion may account for up to 30% of metal pollutants. A novel finding of this study is the increase in the otherwise near-constant Y/Ho ratio after 1900 AD. We link this change to widespread and increased application of marine phosphate fertiliser in Australia's main agricultural area (the Murray Darling Basin).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2009.12.009DOI Listing

Publication Analysis

Top Keywords

peat bogs
8
atmospheric metal
8
metal pollution
8
coal combustion
8
metal
5
atmospheric
4
atmospheric pollutants
4
pollutants alpine
4
alpine peat
4
bogs record
4

Similar Publications

Alteration of nitrogen sink and emission by vegetation distribution in a wetland with significant change in water level.

J Environ Manage

December 2024

Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; Department of Ecological Sciences and Engineering, Chongqing University, Chongqing, 400045, China. Electronic address:

In wetlands, hydrological conditions drive plant community distribution, forming vegetation zones with plant species and material cycling. This mediates nitrogen migration and NO emissions within wetlands. Five vegetation zones in a large wetland were studied during flooding and drought periods.

View Article and Find Full Text PDF

The examination of wastewater and effluents flowing into receiving water bodies is crucial for identifying pollutant sources and implementing scenarios to reduce them. In this study, QUAL2kw was used to identify, assess, and predict the pollutant load of a drainage canal located 6 km away from Anzali Wetland. Initially, the model was calibrated and validated with data collected in 2017.

View Article and Find Full Text PDF

Mine ecological restoration has experienced a long-term development process in China, in which various technologies have been constantly developing and integrating. Based on the related theoretical research and field program, the technical system of mine ecological restoration was constructed, and the characteristics of key technologies were specifically grasped. In this research, the environment, including natural elements and the spatial environment, is the object of mine ecological restoration, which requires further long-term investigation and monitoring.

View Article and Find Full Text PDF

Excessive heavy metals (HMs) exposure in surface soils may cause non-negligible health risks to human beings; however, the potential health risk assessment of HMs in Yellow River Delta wetland (YRDW) soils has rarely been evaluated. In this study, we sampled surface wetland soils from ten typical functional areas in YRDW, assessed the HMs pollution status, evaluated their potential health risks, stimulated their probabilistic distributions of health risks and analyzed their potential source apportionment using Positive matrix factorization and Monte Carlo simulation. Enrichment factor (EF) and geo-accumulation index (I) indicated significant anthropogenic impacts, particularly in oil-contaminated sites, while Sediment Quality Guidelines (SQGs) comparison results suggested potential ecological risks, especially for As and Ni, which were occasionally above threshold effect levels.

View Article and Find Full Text PDF

In recent decades, biodiversity loss has greatly impacted planetary and human health. Children are at additional risk of adverse effects due to unique biological, developmental, and behavioral factors, as well as their longer exposure to an altered planet as a function of their young age. These effects are heightened for children living in vulnerable socioeconomic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!