Aberrant regulation of cap-dependent translation has been frequently observed in the development of cancer. Association of the cap-binding protein eIF4E with N(7)-methylated guanosine capped mRNA is the rate limiting step governing translation initiation; and therefore represents an attractive process for cancer drug discovery. Previously, replacement of the 7-Me group of the Me(7)-guanosine monophosphate with a benzyl group has been found to increase binding affinity to eIF4E. Recent X-ray crystallographic studies have revealed that the cap-binding pocket undergoes a unique structural change in order to accommodate the benzyl group. To explore the structure-activity relationships governing the affinity of N(7)-benzylated guanosine monophosphate (Bn(7)-GMP) for eIF4E, we virtually screened a library of 80 Bn(7)-GMP analogs utilizing CombiGlide as implemented in Schrodinger. A subset library of substituted Bn(7)-GMP analogs was synthesized and their dissociation constants (K(d)) were determined. Due to the poor correlation between docking/scoring results and experimental binding affinities, three-dimensional quantitative structure-activity relationship (3D-QSAR) calculations were performed. Two highly predictive and self-consistent CoMFA (comparative molecular field analysis) and CoMSIA (comparative molecular similarity indices analysis) models were derived and optimized. These models may be useful for the future design of eIF4E cap-binding antagonists.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853597 | PMC |
http://dx.doi.org/10.1016/j.ejmech.2009.11.054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!