Antiviral drug discovery is becoming increasingly important due to the global threat of viral disease pandemics. Many members of the genus Flavivirus are significant human pathogens, among which dengue virus (DENV) alone poses a public health threat to 2.5 billion worldwide, leading to 50-100 million human infections each year. Neither vaccine nor effective therapeutics is currently available for DENV. Development of a DENV vaccine has been challenging, because of the need to simultaneously immunize and induce a long-lasting protection against all four serotypes of DENV; an incompletely immunized individual may be sensitized to life-threatening dengue hemorrhagic fever or dengue shock syndrome. The challenges associated with vaccine development have underscored the importance of development of antiviral therapies for DENV and other flaviviruses. Here we review the strategies to identify inhibitors for DENV therapy. Both viral and host proteins essential for viral replication cycle are potential targets for antiviral development. Inhibitors could be identified by multiple approaches, including enzyme-based screening, viral replication-based screening, structure-based rational design, virtual screening, and fragment-based screening. The strategies discussed in this report should be applicable to antiviral development of other viruses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.antiviral.2009.12.011 | DOI Listing |
Front Cell Infect Microbiol
January 2025
Institute of Biological Sciences, Federal University of Pará, Belem, Pará, Brazil.
Background: Mosquito-borne diseases have a significant public health threat worldwide, with arboviruses accounting for a high proportion of infectious diseases and mortality annually. Brazil, in particular, has been suffering outbreaks of diseases transmitted by mosquito viruses, notably those of the genus, such as dengue, Zika, and chikungunya. Against this background, the São Paulo Zoo is an intriguing ecological niche to explore the virome of mosquitoes, potentially shedding light on the dynamics of arbovirus transmission within a confined setting.
View Article and Find Full Text PDFACS Omega
January 2025
Laboratory of Biotechnology and Molecular Biology, Health Sciences Center, State University of Ceara, Fortaleza 60714-903, Brazil.
Zika (ZIKV) and Dengue (DENV) viruses are clinically significant due to their severe neurological and hemorrhagic complications. Rapid diagnostics often rely on nonstructural proteins to generate specific antibodies. This study aimed to produce IgG antibodies from the recombinant ZIKV protein and plant-expressed NS2B protein for arbovirus detection in serum and urine samples.
View Article and Find Full Text PDFBMC Oral Health
January 2025
School of Dentistry, Catholic University of Pelotas (UCPel), Campus da Saúde, Av. Fernando Osório, 1586-Pelotas, Pelotas, RS, Brazil.
Background: Dengue virus (DENV) infection, a mosquito-borne disease, presents a significant public health challenge globally, with diverse clinical manifestations. Although oral dengue manifestations are uncommon, they can serve as crucial diagnostic indicators and impact patient management in dental practice. This scoping review aims to map the evidence on the oral manifestations associated with DENV infection and their clinical implications for dental practice.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
Aedes mosquitoes transmit pathogenic arthropod-borne (arbo) viruses, putting nearly half the world's population at risk. Blocking virus replication in mosquitoes is a promising approach to prevent arbovirus transmission, the development of which requires in-depth knowledge of virus-host interactions and mosquito immunity. By integrating multi-omics data, we find that heat shock factor 1 (Hsf1) regulates eight small heat shock protein (sHsp) genes within one topologically associated domain in the genome of the Aedes aegypti mosquito.
View Article and Find Full Text PDFJ Biol Chem
January 2025
Institute of Virology, Philipps University Marburg, Marburg, Germany. Electronic address:
Orthoflaviviruses are emerging arthropod-borne pathogens whose replication cycle is tightly linked to host lipid metabolism. Previous lipidomic studies demonstrated that infection with the closely related hepatitis C virus (HCV) changes the fatty acid (FA) profile of several lipid classes. Lipids in HCV-infected cells had more very long-chain and desaturated FAs and viral replication relied on functional FA elongation and desaturation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!