How are biological structures maintained in a cellular environment that constantly threatens protein integrity? Here we elucidate proteostasis mechanisms affecting the Z disk, a protein assembly essential for actin anchoring in striated muscles, which is subjected to mechanical, thermal, and oxidative stress during contraction [1]. Based on the characterization of the Drosophila melanogaster cochaperone Starvin (Stv), we define a conserved chaperone machinery required for Z disk maintenance. Instead of keeping Z disk proteins in a folded conformation, this machinery facilitates the degradation of damaged components, such as filamin, through chaperone-assisted selective autophagy (CASA). Stv and its mammalian ortholog BAG-3 coordinate the activity of Hsc70 and the small heat shock protein HspB8 during disposal that is initiated by the chaperone-associated ubiquitin ligase CHIP and the autophagic ubiquitin adaptor p62. CASA is thus distinct from chaperone-mediated autophagy, previously shown to facilitate the ubiquitin-independent, direct translocation of a client across the lysosomal membrane [2]. Impaired CASA results in Z disk disintegration and progressive muscle weakness in flies, mice, and men. Our findings reveal the importance of chaperone-assisted degradation for the preservation of cellular structures and identify muscle as a tissue that highly relies on an intact proteostasis network, thereby shedding light on diverse myopathies and aging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cub.2009.11.022 | DOI Listing |
Stem Cell Res
December 2024
Institute of Physiology I, Medical Faculty, University of Bonn, Germany. Electronic address:
BAG3 contributes to the maintenance of proteostasis through chaperone-assisted selective autophagy. This function is impaired by a single amino acid exchange (P209L) in the protein, which causes myofibrillar myopathy-6 (MFM6). This disease manifests as severe skeletal muscle weakness, neuropathy and restrictive cardiomyopathy.
View Article and Find Full Text PDFPhys Life Rev
December 2024
Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russian Federation. Electronic address:
This review presents the current understanding of (i) spontaneous self-organization of spatial structures of protein molecules, and (ii) possible ways of chaperones' assistance to this process. Specifically, we overview the most important features of spontaneous folding of proteins (mostly, of the single-domain water-soluble globular proteins): the choice of the unique protein structure among zillions of alternatives, the nucleation of the folding process, and phase transitions within protein molecules. We consider the main experimental facts on protein folding, both in vivo and in vitro, of both kinetic and thermodynamic nature.
View Article and Find Full Text PDFStem Cell Res
December 2024
Institute of Physiology I, Medical Faculty, University of Bonn, Germany. Electronic address:
BAG3 plays a key role in proteostasis as a central component of the chaperone-assisted selective autophagy (CASA) complex. A point mutation (p.P209L; c.
View Article and Find Full Text PDFStem Cell Res
December 2024
Institute of Physiology I, Medical Faculty, University of Bonn, Germany. Electronic address:
BAG3 is a central component of the chaperone-assisted selective autophagy complex and thus important for proteostasis. This function is affected by a point mutation (p.P209L; c.
View Article and Find Full Text PDFLife Sci Alliance
February 2025
Institute of Biology III, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
The co-chaperone BAG3 plays critical roles in maintaining cellular proteostasis. It associates with 14-3-3 proteins during the trafficking of aggregation-prone proteins and facilitates their degradation through chaperone-assisted selective autophagy in cooperation with small heat shock proteins. Although reversible phosphorylation regulates BAG3 function, the involved phosphatases remain unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!