Influenza A viruses in wild birds of the Pacific flyway, 2005-2008.

Vector Borne Zoonotic Dis

Wildlife Health Center, University of California, School of Veterinary Medicine, Davis, California 95616, USA.

Published: October 2010

Avian influenza viruses (AIVs) pose a significant threat to public health, and viral subtypes circulating in natural avian reservoirs can contribute to the emergence of pathogenic influenza viruses in humans. We investigated the prevalence and distribution of AIVs in 8826 migratory and resident wild birds in North America along the Pacific flyway, which is a major north-south migration pathway that overlaps with four other flyways in Alaska providing opportunities for mixing of Eurasian and American origin influenza viruses. Overall, the prevalence of AIVs was low (1%) among the wide range of avian species tested, but we detected AIVs in 69 hunter-harvested waterfowl (Anseriformes) sampled at a national wildlife refuge in California from October 2007 to January 2008. A wide range of subtypes were detected in waterfowl with H6N1, H10N7, H7N3, and H3N5 being the most common. We suspect H6N1 was introduced or remerged in 2007 at this key wintering site for waterfowl along the Pacific Flyway. Over a 3-week period, 13 H6N1 AIVs were isolated from two northern pintails (Anas acuta), three northern shovelers (Anas clypeata), three ring-necked ducks (Aythya collaris), four American widgeon (Anas americana), and one gadwall (Anas strepera). We conclude that a diverse array of AIVs was present and that cross-species transmission was occurring among waterfowl in the central valley wetlands of California.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2976637PMC
http://dx.doi.org/10.1089/vbz.2009.0095DOI Listing

Publication Analysis

Top Keywords

influenza viruses
16
pacific flyway
12
wild birds
8
wide range
8
aivs
6
influenza
4
viruses wild
4
birds pacific
4
flyway 2005-2008
4
2005-2008 avian
4

Similar Publications

During the 2023-2024 winter, 11 high pathogenicity avian influenza (HPAI) outbreaks caused by clade 2.3.4.

View Article and Find Full Text PDF

A historical perspective of more than one hundred years of influenza surveillance in New York State demonstrates the progression from anecdotes and case counts to next-generation sequencing and electronic database management, greatly improving pandemic preparedness and response. Here, we determined if influenza virologic surveillance at the New York State public health laboratory (NYS PHL) tests sufficient specimen numbers within preferred confidence limits to assess situational awareness and detect novel viruses that pose a pandemic risk. To this end, we analyzed retrospective electronic data on laboratory test results for the influenza seasons 1997-1998 to 2021-2022 according to sample sizes recommended in the Influenza Virologic Surveillance Right Size Roadmap issued by the Association of Public Health Laboratories and Centers for Disease Control and Prevention.

View Article and Find Full Text PDF

Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease caused by the JC polyomavirus (JCPyV). Based on the clinical criteria, PML is diagnosed via polymerase chain reaction (PCR) detection of JCPyV DNA in cerebrospinal fluid (CSF) in combination with neurological and imaging findings. Although the utility of CSF JCPyV testing using ultrasensitive PCR assays has been suggested, its potential requires further evaluation.

View Article and Find Full Text PDF

Background: Understanding the interference patterns of respiratory viruses could be important for shedding light on potential strategies to combat these human infectious agents.

Objective: To investigate the possible interactions between adenovirus type 2 (AdV2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A/H1N1 pandemic (H1N1pdm09) using the A549 cell line.

Methods: Single infections, co-infections, and superinfections (at 3 and 24 h after the first virus infection) were performed by varying the multiplicity of infection (MOI).

View Article and Find Full Text PDF

Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!