There are two principal mechanisms of acetylcholine (ACh) release from the resting motor nerve terminal: quantal and non-quantal (NQR); the former being only a small fraction of the total, at least at rest. In the present article we summarize basic research about the NQR that is undoubtedly an important trophic factor during endplate development and in adult neuromuscular contacts. NQR helps to eliminate the polyneural innervation of developing muscle fibers, ensures higher excitability of the adult subsynaptic membrane by surplus polarization and protects the RMP from depolarization by regulating the NO cascade and chloride transport. It shortens the endplate potentials by promoting postsynaptic receptor desensitization when AChE is inhibited during anti-AChE poisoning. In adult synapses, it can also activate the electrogenic Na(+)/K(+)-pump, change the degree of synchronization of quanta released by the nerve stimulation and affects the contractility of skeletal muscles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.33549/physiolres.931865 | DOI Listing |
Front Mol Biosci
December 2024
Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze Della Terra), University of Calabria, Arcavacata di Rende, Italy.
A role for acetylcholine in cell proliferation, epithelial mesenchymal transition and invasion has been well assessed and related to the presence of the non-neuronal cholinergic system in lung cancer. For the operation of this non-neuronal system, acetylcholine should be released by a transporter mediated non-quantal process. OCTN1 is one of the transporters able to catalyse acetylcholine efflux and .
View Article and Find Full Text PDFInt J Mol Sci
September 2020
Department of Medical and Biological Physics with Computer Science and Medical Equipment, Kazan State Medical University, 49 Butlerov Street, 420012 Kazan, Russia.
A review of the data on the modulatory action of adenosine 5'-triphosphate (ATP), the main co-transmitter with acetylcholine, and adenosine, the final ATP metabolite in the synaptic cleft, on neuromuscular transmission is presented. The effects of these endogenous modulators on pre- and post-synaptic processes are discussed. The contribution of purines to the processes of quantal and non-quantal secretion of acetylcholine into the synaptic cleft, as well as the influence of the postsynaptic effects of ATP and adenosine on the functioning of cholinergic receptors, are evaluated.
View Article and Find Full Text PDFJ Neurophysiol
August 2020
Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland.
In the vestibular peripheral organs, type I and type II hair cells (HCs) transmit incoming signals via glutamatergic quantal transmission onto afferent nerve fibers. Additionally, type I HCs transmit via "non-quantal" transmission to calyx afferent fibers, by accumulation of glutamate and potassium in the synaptic cleft. Vestibular efferent inputs originating in the brainstem contact type II HCs and vestibular afferents.
View Article and Find Full Text PDFJ Neurochem
December 2015
Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia.
Gamma-aminobutyric acid (GABA) is an amino acid which acts as a neurotransmitter in the central nervous system. Here, we studied the effects of GABA on non-quantal, spontaneous, and evoked quantal acetylcholine (ACh) release from motor nerve endings. We found that while the application of 10 μM of GABA had no effect on spontaneous quantal ACh release, as detected by the frequency of miniature endplate potentials, GABA reduced the non-quantal ACh release by 57%, as determined by the H-effect value.
View Article and Find Full Text PDFInt Immunopharmacol
November 2015
Institute for Anatomy and Cell Biology, Justus-Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC) and German Center for Lung Research (DZL), Excellence Cluster Cardio-Pulmonary System, 35385 Giessen, Germany.
In addition to quantal, vesicular release of acetylcholine (ACh), there is also non-quantal release at the motor endplate which is insufficient to evoke postsynaptic responses unless acetylcholinesterase (AChE) is inhibited. We here addressed potential non-quantal release in the mouse trachea by organ bath experiments and (immuno)histochemical methods. Electrical field stimulation (EFS) of nerve terminals elicited tracheal constriction that is largely due to ACh release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!