This paper evaluates the potential of the field separation method (FSM) for performing subwoofer measurements in a small test room with poor absorbing properties, as is commonly available. The FSM requires the knowledge of both acoustic pressure and velocity fields on a closed surface surrounding the tested source. Pressures and velocities, measured using a p-p probe on a half-sphere mesh, are collected under various conditions: in a room with variable reverberation time (6.4-0.6 s) and with four measurement half-sphere radii. The measured data are expanded on spherical harmonics, separating outward and inward propagation. The pressure field reflected by walls of the surrounding room is then subtracted from the measured field to estimate the pressure field that would have been radiated under free-field conditions. Theoretical frequency response of the subwoofer is computed using an analytical formulation derived from an extended Thiele and Small model of the membrane motion, coupled to a boundary element model for computing the radiated pressure while taking into account the actual subwoofer geometry. Measurement and simulation results show a good agreement. The effects of the measurement distance, the measurement point number, and the room reverberation time on the separation process are then discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.3270392 | DOI Listing |
Ear Hear
January 2025
Dutch Foundation of the Deaf and Hard of Hearing Child (NSDSK), Amsterdam, The Netherlands.
Objectives: One important aspect in facilitating language access for children with hearing loss (HL) is the auditory environment. An optimal auditory environment is characterized by high signal to noise ratios (SNRs), low background noise levels, and low reverberation times. In this study, the authors describe the auditory environment of early intervention groups specifically equipped for young children with HL.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA 15213.
Front Neurosci
December 2024
Department of Quantum Nanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, Netherlands.
Neuronal activity in the highly organized networks of the central nervous system is the vital basis for various functional processes, such as perception, motor control, and cognition. Understanding interneuronal connectivity and how activity is regulated in the neuronal circuits is crucial for interpreting how the brain works. Multi-electrode arrays (MEAs) are particularly useful for studying the dynamics of neuronal network activity and their development as they allow for real-time, high-throughput measurements of neural activity.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Engineering Science and Mechanics, Penn State, University Park, PA 16802, USA.
Ultrasound is an excellent way to acquire data that reveal useful information about systems operating in harsh environments, which may include elevated temperature, ionizing radiation, and aggressive chemicals. The effects of harsh environments on piezoelectric materials have been studied in much more depth than the other aspects of ultrasonic transducers used in pulse-echo mode. Therefore, finite element simulations and laboratory experiments are used to demonstrate the unique characteristics of pulse-echo immersion testing.
View Article and Find Full Text PDFJASA Express Lett
December 2024
Applied Physics Laboratory, University of Washington, Seattle, Washington 98105,
This study builds on Dahl, Bonnel, and Dall'Osto [J. Acoust. Soc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!