Density functional study of CO adsorbed on MnN (N = 2-8) clusters.

J Phys Chem A

Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083, People's Republic of China.

Published: February 2010

The geometry, electronic structure, magnetism, and adsorption properties of one CO molecule on the Mn(N) (N = 2-8) clusters have been investigated based on the density functional theory (DFT) with the spin polarized generalized gradient approximation. It is found that the CO molecule adsorbs on the atop site for N = 2, 4, 7, 8 and on the bridge site for N = 3, 5, 6. The results of the calculated second-order energy differences of bare Mn(N) cluster indicate that the Mn(3), Mn(6), and Mn(8) clusters have relatively low stability. However, their corresponding CO complexes possess high adsorption ability implied by the C-O bond length, vibrational frequency, adsorption energy, and the charge transfer between the CO molecule and the clusters. Compared with bare Mn clusters, the adsorbing of a CO molecule enhances the magnetic moments of the Mn(N) clusters for N = 4, 6-8.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp910119wDOI Listing

Publication Analysis

Top Keywords

density functional
8
mnn 2-8
8
2-8 clusters
8
clusters
6
functional study
4
study adsorbed
4
mnn
4
adsorbed mnn
4
clusters geometry
4
geometry electronic
4

Similar Publications

Heritable fragile bone disorders (FBDs), ranging from multifactorial to rare monogenic conditions, are characterized by an elevated fracture risk. Validating causative genes and understanding their mechanisms remain challenging. We assessed a semi-high throughput zebrafish screening platform for rapid in vivo functional testing of candidate FBD genes.

View Article and Find Full Text PDF

Black phosphorus (BP), a promising two-dimensional material, faces significant challenges for its applications due to its instability in air and water. Herein, molecular dynamics simulations reveal that a self-assembled ferrocene (FeCp) molecular layer can form on BP surfaces and remain stable in aqueous environments, predicting its effectiveness for passivation. This theoretical finding is corroborated by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, Raman spectroscopy, and optical microscopy observations.

View Article and Find Full Text PDF

Two-dimensional transition metal dichalcogenides (2D TMDCs) can be combined with organic semiconductors to form hybrid van der Waals heterostructures. Specially, non-fullerene acceptors (NFAs) stand out due to their excellent absorption and exciton diffusion properties. Here, we couple monolayer tungsten diselenide (ML-WSe) with two well performing NFAs, ITIC, and IT-4F (fluorinated ITIC) to achieve hybrid architectures.

View Article and Find Full Text PDF

Purpose: Research suggests that insulin resistance (IR) is associated with acute ischemic stroke (AIS) and depression. The use of insulin-based IR assessments is complicated. Therefore, we explored the relationship between four non-insulin-based IR indices and post-stroke depression (PSD).

View Article and Find Full Text PDF

Background: At present, the existing internal medicine drug treatment can alleviate the high glucose toxicity of patients to a certain extent, to explore the efficacy of laparoscopic jejunoileal side to side anastomosis in the treatment of type 2 diabetes, the report is as follows.

Aim: To investigate the effect of jejunoileal side-to-side anastomosis on metabolic parameters in patients with type 2 diabetes mellitus (T2DM).

Methods: We retrospectively analyzed the clinical data of 78 patients with T2DM who were treated jejunoileal lateral anastomosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!