In this report we introduce a simple, fast, and reliable method to prepare whole cell or nuclear extracts from small numbers of cells. These extracts were used to study transcriptional activation of the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) in vitro. Our results revealed that the time courses of activation of extracts derived from cells stimulated with the mitogenic lectin phytohemagglutinin (PHA) or with the tumor promoter phorbol 12-myristate 13-acetate (PMA) are different. PMA induces a rapid onset of increased in vitro transcription from the HIV-1 LTR, while PHA causes a slow and sustained response. The biochemical relevance of protein synthesis inhibition by cycloheximide treatment of cells was investigated. In these studies, PMA induction of a change in in vitro transcriptional activity is not dependent on protein synthesis. Cycloheximide alone is insufficient to induce activation. Oligonucleotide-mediated site-directed mutagenesis demonstrated that mutation of the TATA box in the LTR ablated initiation of both basal-level transcription and activation by extracts from cells stimulated with PMA. Surprisingly, mutation of both kappa B sites in the LTR reduced but did not eliminate the in vitro response to extracts prepared at early time points after PHA or PMA stimulation of Jurkat cells. The reduction was greater in extracts derived from cells treated with PMA. Deletion analysis of the HIV-1 LTR revealed at least one region (-464 to -252) capable of suppressing in vitro transcription in extracts from Jurkat cells stimulated by PMA. This result is consistent with early studies of the HIV-1 LTR in transient transfection assays. We therefore have been able to observe distinct regulatory events at early time points after cells are exposed to agents known to induce transcription of both the HIV-1 LTR reporter gene constructs and the HIV-1 provirus itself.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC359867 | PMC |
http://dx.doi.org/10.1128/mcb.11.4.1883-1893.1991 | DOI Listing |
Biomedicines
January 2025
Herbert Wertheim College of Medicine, Cellular and Molecular Medicine, Florida International University, Miami, FL 33199, USA.
Background: Human immunodeficiency virus (HIV) establishes latent infections in cellular reservoirs, including microglia. HC69 cells, a microglial model of HIV latency, contain an HIV promoter long terminal repeat (LTR)-GFP reporter and were used for testing the efficacy of a two-step magnetoelectric nanoparticle (MENP) and extracellular vesicle (xEV) latency-targeting (MELT) nanotherapeutic. GFP expression in HC69 at rest is low (GFP), and upon exposure to LTR, transcription-activating agents (i.
View Article and Find Full Text PDFJ Virol
January 2025
Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany.
One key determinant of HIV-1 latency reversal is the activation of the viral long terminal repeat (LTR) by cellular transcription factors such as NF-κB and AP-1. Interestingly, the activity of these two transcription factors can be modulated by glucocorticoid receptors (GRs). Furthermore, the HIV-1 genome contains multiple binding sites for GRs.
View Article and Find Full Text PDFJ Virus Erad
December 2024
HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
Sub-Saharan Africa accounts for almost 70 % of people living with HIV (PLWH) worldwide, with the greatest numbers centred in South Africa where 98 % of infections are caused by subtype C (HIV-1C). However, HIV-1 subtype B (HIV-1B), prevalent in Europe and North America, has been the focus of most cure research and testing despite making up only 12 % of HIV-1 infections globally. Development of latency models for non-subtype B viruses is a necessary step to address this disproportionate focus.
View Article and Find Full Text PDFViruses
November 2024
Laboratory Branch, Division of HIV Prevention, National Center for HIV, Viral Hepatitis, STD and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
The HIV integrase inhibitor, dolutegravir (DTG), in the absence of eliciting integrase (int) resistance, has been reported to select mutations in the virus 3'-polypurine tract (3'-PPT) adjacent to the 3'-LTR U3. An analog of DTG, cabotegravir (CAB), has a high genetic barrier to drug resistance and is used in formulations for treatment and long-acting pre-exposure prophylaxis. We examined whether mutations observed for DTG would emerge in vitro with CAB.
View Article and Find Full Text PDFVirology
December 2024
Section of Infectious Diseases, Department of Internal Medicine, Yale University, New Haven, CT, 06510, USA. Electronic address:
Significant advances in treatment have turned HIV-1 into a manageable chronic condition. This has been achieved due to highly active antiretroviral therapy (HAART), involving a combination regimen of medications, including drugs that target Reverse Transcriptase, Protease, Integrase, and viral entry, explored in this review. This paper also highlights novel therapies, such as Lenacapavir, and avenues toward functional cure targeting the CCR5 co-receptor, including the Δ32 mutation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!