Cyclophosphamide (CP) has been used as an antitumour agent or immunosuppressant clinically, though the potential biological role of CP in the central nervous system (CNS) has not been clarified. In the present study, we found that pretreatment with CP prevented neuronal cell death caused by serum deprivation in cultured cortical neurons. Interestingly, CP stimulated activation of PI3K (phosphatidylinositol 3 kinase) and MAPK/ERK (mitogen-activated protein kinase/extracellular signal-regulated kinase) pathways, which are known as survival-promoting intracellular signalings. Furthermore, CP increased the expression of Bcl2, an anti-apoptotic factor. In the presence of inhibitors for PI3K or MAPK/ERK pathways, the CP-dependent neuronal survival and Bcl-2 up-regulation were both abolished. Importantly, significant increase in BDNF (brain-derived neurotrophic factor) expression was induced by CP application, implying that BDNF up-regulation is involved in the CP effect. We propose that CP has a protective effect on CNS neurons via the activation of intracellular signalings, and up-regulation of Bcl2 and BDNF.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neulet.2009.12.073DOI Listing

Publication Analysis

Top Keywords

activation intracellular
8
cultured cortical
8
cortical neurons
8
intracellular signalings
8
cyclophosphamide promotes
4
promotes cell
4
cell survival
4
survival activation
4
intracellular signaling
4
signaling cultured
4

Similar Publications

Background: Mitochondria generate the adenosine triphosphate (ATP) necessary for eukaryotic cells, serving as their primary energy suppliers, and contribute to host defense by producing reactive oxygen species. In many critical illnesses, including sepsis, major trauma, and heatstroke, the vicious cycle between activated coagulation and inflammation results in tissue hypoxia-induced mitochondrial dysfunction, and impaired mitochondrial function contributes to thromboinflammation and cell death.

Methods: A computer-based online search was performed using the PubMed and Web of Science databases for published articles concerning sepsis, trauma, critical illnesses, cell death, mitochondria, inflammation, coagulopathy, and organ dysfunction.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) continue to be a substantial global healthcare burden despite considerable progress in therapies. The inflammatory response during the progression of CVD has attracted considerable attention. Mitochondria serve as the principal energy source for the heart.

View Article and Find Full Text PDF

Cell-free in vitro assays offer several advantages for elucidating molecular mechanisms underlying various biological processes. Here, we describe a simple and quantitative in vitro assay using isolated yeast microsomes to measure homotypic ER membrane fusion. In this assay, membrane fusion between ER microsomes is monitored by reconstitution of luciferase activity from split luciferase fragments.

View Article and Find Full Text PDF

Assays of Platelet SNARE-actin Interactions.

Methods Mol Biol

January 2025

Division of Hemostasis and Thrombosis, Department of Medicine, BIDMC, Harvard Medical School, Boston, MA, USA.

The actin cytoskeleton serves an important, but poorly characterized, role in controlling granule exocytosis. The dynamic nature of actin remodeling allows it to act both as a barrier to prevent indiscriminate granule release and as a facilitator of membrane fusion. In its capacity to promote exocytosis, filamentous actin binds to components of the exocytotic machinery through actin binding proteins, but also through direct interactions with SNAREs.

View Article and Find Full Text PDF

Investigating Complexin-Membrane Interactions Using NMR and Optical Methods.

Methods Mol Biol

January 2025

Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA.

Complexins are a family of small presynaptic proteins that regulate neurotransmitter release at nerve terminals and are highly conserved in evolution. While direct interactions with SNARE proteins are critical for all complexin functions, binding of their disordered C-terminal domains (CTD) to membranes, especially to synaptic vesicle membranes, is essential for the ability of complexin to inhibit vesicle release. Furthermore, while some complexin CTDs possess an endogenous affinity for membranes, other complexin isoforms are subject to lipidation at their C-termini, which is presumed to confer additional membrane binding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!