Functional impact of serial deletions at the C-terminus of the human GABArho1 receptor.

Biochim Biophys Acta

Laboratory of Cellular and Molecular Neurobiology, Department of Neurobiology and Behavior, McGaugh Hall 1109, University of California Irvine, Irvine, CA 92697-4550, USA.

Published: May 2010

GABArho1 receptors are formed by homopentameric assemblies that gate a chloride ion-channel upon activation by the neurotransmitter. Very little is known about the structural and functional roles played by the different domains that form each subunit; but one of them, the fourth transmembrane segment (TM4), is known to form a hydrophobic bundle together with three other TM segments that are necessary to stabilize the structure of the receptor. In this study we progressively removed amino acid residues from the C-terminus of the human GABArho1 and studied the functional properties of the receptor mutants expressed in X. laevis oocytes. We found that deletions of up to the last four residues gave rise to receptors that were still functional, generating currents of 3.92 microA for the wt, 5.75 microA for S479X, 1.82 microA for F478X, 0.52 microA for I477X and 0.27 microA for S476X when exposed to 5 microM GABA; surprisingly, the mutant with one residue removed resulted more sensitive to the agonists. Further deletions, up to residue W475, resulted in receptors that did not gate an ion-channel. In addition, deleting the signal sequence, from R2-A15, in the N-terminus produced non-functional receptors. This study reveals that GABArho1 can tolerate removal of several residues that form the fourth transmembrane segment up to a critical point, signaled by W475, beyond which the mutant protein is translated but does not form functional receptors. A comparative study is presented of some electrophysiological and pharmacological properties of the deletion mutants that were able to generate GABA currents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2009.12.021DOI Listing

Publication Analysis

Top Keywords

c-terminus human
8
human gabarho1
8
fourth transmembrane
8
transmembrane segment
8
functional
5
receptors
5
microa
5
functional impact
4
impact serial
4
serial deletions
4

Similar Publications

In silico screening and immunogenic features of putative tick cement protein PA107 from Ixodes ricinus tick.

Exp Appl Acarol

January 2025

Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.

Tick salivary proteins are crucial for efficient and successful tick feeding. Most of them are still uncharacterized, especially those involved in the formation of tick cement. Tick salivary protein PA107 is a putative cement protein, which is transcribed in salivary glands during the initial phase of tick feeding.

View Article and Find Full Text PDF

The mammalian high mobility group protein AT-hook 2 (HMGA2) is a small DNA-binding protein that specifically targets AT-rich DNA sequences. Structurally, HMGA2 is an intrinsically disordered protein (IDP), comprising three positively charged 'AT-hooks' and a negatively charged C-terminus. HMGA2 can form homodimers through electrostatic interactions between its 'AT-hooks' and C-terminus.

View Article and Find Full Text PDF

Generation and characterization of OX40-ligand fusion protein that agonizes OX40 on T-Lymphocytes.

Front Immunol

January 2025

Laboratory of Molecular Cell Biology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.

OX40, a member of the tumor necrosis factor (TNF) receptor superfamily, is expressed on the surface of activated T cells. Upon interaction with its cognate ligand, OX40L, OX40 transmits costimulatory signals to antigen-primed T cells, promoting their activation, differentiation, and survivalprocesses essential for the establishment of adaptive immunity. Although the OX40-OX40L interaction has been extensively studied in the context of disease treatment, developing a substitute for the naturally expressed membrane-bound OX40L, particularly a multimerized OX40L trimers, that effectively regulates OX40-driven T cell responses remains a significant challenge.

View Article and Find Full Text PDF

A human epidermal growth factor receptor 2 (HER2)-specific nanobody called 2Rs15d, containing a His3LysHis6 segment at the C-terminus, was recombinantly produced. Subsequent site-selective acylation on the C-terminally activated lysine residue allowed installation of the cytotoxin monomethyl auristatin E-functionalized cathepsin B-sensitive payload to provide a highly homogenous nanobody-drug conjugate (NBC), which demonstrated high potency and selectivity for HER2-positive breast cancer models.

View Article and Find Full Text PDF

Sequences and three-dimensional structures of the four vertebrate arrestins are very similar, yet in sharp contrast to other subtypes, arrestin-1 demonstrates exquisite selectivity for the active phosphorylated form of its cognate receptor, rhodopsin. The N-terminus participates in receptor binding and serves as the anchor of the C-terminus, the release of which facilitates arrestin transition into a receptor-binding state. We tested the effects of substitutions of fourteen residues in the N-terminus of arrestin-1 on the binding to phosphorylated and unphosphorylated light-activated rhodopsin of wild-type protein and its enhanced mutant with C-terminal deletion that demonstrates higher binding to both functional forms of rhodopsin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!