Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
G protein-coupled receptors (GPCRs) are key transmembrane recognition molecules for regulatory signals such as light, odors, taste hormones, and neurotransmitters. In addition to activating guanine nucleotide binding proteins (G proteins), GPCRs associate with a variety of GPCR-interacting proteins (GIPs). GIPs contain structural interacting domains that allow the formation of large functional complexes involved in G protein-dependent and -independent signaling. At the cellular level, other functions of GIPs include targeting of GPCRs to subcellular compartments and their trafficking to and from the plasma membrane. Recently, roles of GPCR-GIP interactions in central nervous system physiology and pathologies have been revealed. Here, we highlight the role of GIPs in some important neurological and psychiatric disorders, as well as their potential for the future development of therapeutic drugs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev.pharmtox.010909.105705 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!