ABSTRACT The basidiomycetous fungus Rhizoctonia solani anastomosis group (AG)-1 IA is a major pathogen in Latin America causing sheath blight (SB) of rice. Particularly in Venezuela, the fungus also causes banded leaf and sheath blight (BLSB) on maize, which is considered an emerging disease problem where maize replaced traditional rice-cropping areas or is now planted in adjacent fields. Our goals in this study were to elucidate (i) the effects of host specialization on gene flow between sympatric and allopatric rice and maize-infecting fungal populations and (ii) the reproductive mode of the fungus, looking for evidence of recombination. In total, 375 isolates of R. solani AG1 IA sampled from three sympatric rice and maize fields in Venezuela (Portuguesa State) and two allopatric rice fields from Colombia (Meta State) and Panama (Chiriquí State) were genotyped using 10 microsatellite loci. Allopatric populations from Venezuela, Colombia, and Panama were significantly differentiated (Phi(ST) of 0.16 to 0.34). Partitioning of the genetic diversity indicated differentiation between sympatric populations from different host species, with 17% of the total genetic variation distributed between hosts while only 3 to 6% was distributed geographically among the sympatric Venezuelan fields. We detected symmetrical historical migration between the rice- and the maize-infecting populations from Venezuela. Rice- and maize-derived isolates were able to infect both rice and maize but were more aggressive on their original hosts, consistent with host specialization. Because the maize- and rice-infecting populations are still cross-pathogenic, we postulate that the genetic differentiation was relatively recent and mediated via a host shift. An isolation with migration analysis indicated that the maize-infecting population diverged from the rice-infecting population between 40 and 240 years ago. Our findings also suggest that maize-infecting populations have a mainly recombining reproductive system whereas the rice-infecting populations have a mixed reproductive system in Latin America.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PHYTO-100-2-0172 | DOI Listing |
Virus Genes
June 2018
Department of Plant Pathology, Ohio State University, Wooster, OH, 44691, USA.
Since 2011-2012, Maize lethal necrosis (MLN) has emerged in East Africa, causing massive yield loss and propelling research to identify viruses and virus populations present in maize. As expected, next generation sequencing (NGS) has revealed diverse and abundant viruses from the family Potyviridae, primarily sugarcane mosaic virus (SCMV), and maize chlorotic mottle virus (MCMV) (Tombusviridae), which are known to cause MLN by synergistic co-infection. In addition to these expected viruses, we identified a virus in the genus Polerovirus (family Luteoviridae) in 104/172 samples selected for MLN or other potential virus symptoms from Kenya, Uganda, Rwanda, and Tanzania.
View Article and Find Full Text PDFPhytopathology
February 2010
DANAC--Fundación para la Investigación Agrícola, Laboratorio de Protección Vegetal, San Javier, Yaracuy/Universidad Central de Venezuela, Facultad de Agronomía, Maracay, Aragua, Venezuela.
ABSTRACT The basidiomycetous fungus Rhizoctonia solani anastomosis group (AG)-1 IA is a major pathogen in Latin America causing sheath blight (SB) of rice. Particularly in Venezuela, the fungus also causes banded leaf and sheath blight (BLSB) on maize, which is considered an emerging disease problem where maize replaced traditional rice-cropping areas or is now planted in adjacent fields. Our goals in this study were to elucidate (i) the effects of host specialization on gene flow between sympatric and allopatric rice and maize-infecting fungal populations and (ii) the reproductive mode of the fungus, looking for evidence of recombination.
View Article and Find Full Text PDFPhytopathology
August 2004
ABSTRACT Randomly amplified polymorphic DNA (RAPD) markers and mating type were used to examine regional population structure of Setosphaeria turcica in the eastern United States. Of 251 maize-infecting isolates studied, 155 multilocus haplotypes were identified using 21 RAPD markers. Twelve isolates of the most common haplotype were identified from seven states and represented 5.
View Article and Find Full Text PDFMol Ecol Resour
May 2008
Plant Pathology, Institute of Integrative Biology, ETH Zurich - Swiss Federal Institute of Technology, Universitaetstrasse 2, LFW B28, 8092 Zurich, Switzerland, UNESP - Universidade Estadual Paulista, Campus de Ilha Solteira, 15385-000 Ilha Solteira, SP, Brazil.
Ten polymorphic microsatellite loci were isolated and characterized from the rice- and maize-infecting Basidiomycete fungus Rhizoctonia solani anastomosis group AG-1 IA. All loci were polymorphic in two populations from Louisiana in USA and Venezuela. The total number of alleles per locus ranged from four to eight.
View Article and Find Full Text PDFJ Virol Methods
April 2001
Department of Microbiology, University of Cape Town, Private Bag, Rondebosch 7701, Western Cape, South Africa.
Maize streak virus (MSV) is the most economically significant member of a diverse group of African grass-infecting Mastrevirus species in the family Geminiviridae. We designed a single set of degenerate primers which enables the PCR amplification of an approximately 1300 bp DNA fragment spanning both conserved (the RepA gene) and variable (the long intergenic region and MP gene) portions of these viruses' genomes. Using restriction fragment length polymorphism (RFLP) analysis of PCR products obtained from 39 MSV, one SSV, and two PanSV isolates, it was possible to both identify the different virus species, which differ in nucleotide sequence by up to 40%, and to differentiate between MSV isolates sharing up to 99% sequence identity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!