To explore the mechanism of the absorption enhancement of borneol, the effect of borneol on the intestinal absorption and the pharmacokinetics of tetramethylpyrazine phosphate after oral administration were investigated. In situ intestinal recirculation was performed to study the effect of various concentrations of borneol on the absorption of tetramethylpyrazine phosphate at duodenum, jejunum, ileum and colon. After oral administration of tetramethylpyrazine phosphate, the mixture of tetramethylpyrazine phosphate and borneol and the mixture of tetramethylpyrazine phosphate and verapamil in rats, the concentrations of tetramethylpyrazine phosphate in plasma were determined by RP-HPLC at predesigned time. The pharmacokinetic parameters were compared based on the results of the three animal experiments, and analyzed with software program 3p97. The result showed that tetramethylpyrazine phosphate could be absorbed at all of the four intestinal segments with increasing absorption amount per unit as follows: colon > duodenum > jejunum > ileum, but without saturation, which demonstrated that tetramethylpyrazine phosphate was absorbed via simple diffusion. Borneol could enhance the intestinal absorption of tetramethylpyrazine phosphate, however, not in proportion. There was no obvious difference between the test group and the control group when 10 microg x mL(-1) borneol was added (P > 0.05), while when the concentration comes to 25 microg x mL(-1) and 50 microg x mL(-1), significant differences were observed (P < 0.05). Borneol and verapamil did enhance the bioavailability of tetramethylpyrazine phosphate after oral administration in rats. The enhancing effect of borneol showed only when the concentration came to a certain level but with no specific sites existed in the intestine. One of the mechanisms of borneol on the enhancing effect on absorption of tetramethylpyrazine phosphate might be the inhibition of the metabolism of CYP 3A and exocytosis of P-gp.
Download full-text PDF |
Source |
---|
J Pharm Sci
September 2024
Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201210, China; Yangtze Delta Drug Advanced Research Institute, Nantong 226133, China. Electronic address:
Topical ocular sustained-release drug delivery systems represent an effective strategy for the treatment of ocular diseases, for which a suitable carrier has yet to be sufficiently developed. Herein, an eye-compatible sodium polystyrene sulfonate resin (SPSR) was synthesized with a uniform particle size of about 3 μm. Ligustrazine phosphate (LP) was adsorbed to SPSR by cation exchange to form LP@SPSR.
View Article and Find Full Text PDFBiosci Trends
November 2024
Department of Cardiology, Zhengzhou University, Central China Fuwai Hospital, Zhengzhou, China.
Coronary artery calcification (CAC) is an early marker for atherosclerosis and is mainly induced by the osteoblast-like phenotype conversion of vascular smooth muscle cells (VSMCs). Recent reports indicate that NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis plays a significant role in the calcification of vascular smooth muscle cells (VSMCs), making it a promising target for treating calcific aortic valve disease (CAC). Ligustrazine, or tetramethylpyrazine (TMP), has been found effective in various cardiovascular and cerebrovascular diseases and is suggested to inhibit NLRP3-mediated pyroptosis.
View Article and Find Full Text PDFJ Nanobiotechnology
November 2023
Laboratory of 3D Printing and Regeneration Medicine, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213164, China.
Conventional electrospinning produces nanofibers with smooth surfaces that limit biomineralization ability. To overcome this disadvantage, we fabricated a tetramethylpyrazine (TMP)-loaded matrix-mimicking biomineralization in PCL/Gelatin composite electrospun membranes with bubble-shaped nanofibrous structures. PCL/Gelatin membranes (PG), PCL/Gelatin membranes containing biomineralized hydroxyapatite (HA) (PGH), and PCL/Gelatin membranes containing biomineralized HA and loaded TMP (PGHT) were tested.
View Article and Find Full Text PDFMolecules
September 2023
Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin (Guangxi Normal University), Guilin 541006, China.
Microbial fermentation for the production of tetramethylpyrazine (TTMP) is considered to be the most promising method, and the development of a cheap fermentation substrate is of great importance for large-scale TTMP production. In this study, inexpensive by-products from the food industry, i.e.
View Article and Find Full Text PDFJ Sci Food Agric
November 2023
College of Food and Biological Engineering (Liquor College), Henan University of Animal Husbandry and Economy, Zhengzhou, China.
Background: There are few reports on the breeding of high-yielding tetramethylpyrazine (TTMP) strains in strong-flavor Daqu. In addition, studies on the mechanism of TTMP production in strains are mostly based on common physiological and biochemical indicators, and there is no report on RNA level. Therefore, in this study, a strain with high production of TTMP was screened out from strong-flavor liquor, and transcriptome sequencing analysis was performed to analyze its key metabolic pathways and key genes, and to infer the mechanism of TTMP production in the strain.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!