Recent progress of flower colour modification by biotechnology.

Int J Mol Sci

Florigene Pty Ltd., 1 Park Drive, Bundoora, Victoria 3083, Australia.

Published: December 2009

Genetically-modified, colour-altered varieties of the important cut-flower crop carnation have now been commercially available for nearly ten years. In this review we describe the manipulation of the anthocyanin biosynthesis pathway that has lead to the development of these varieties and how similar manipulations have been successfully applied to both pot plants and another cut-flower species, the rose. From this experience it is clear that down- and up-regulation of the flavonoid and anthocyanin pathway is both possible and predictable. The major commercial benefit of the application of this technology has so far been the development of novel flower colours through the development of transgenic varieties that produce, uniquely for the target species, anthocyanins derived from delphinidin. These anthocyanins are ubiquitous in nature, and occur in both ornamental plants and common food plants. Through the extensive regulatory approval processes that must occur for the commercialization of genetically modified organisms, we have accumulated considerable experimental and trial data to show the accumulation of delphinidin based anthocyanins in the transgenic plants poses no environmental or health risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2801998PMC
http://dx.doi.org/10.3390/ijms10125350DOI Listing

Publication Analysis

Top Keywords

progress flower
4
flower colour
4
colour modification
4
modification biotechnology
4
biotechnology genetically-modified
4
genetically-modified colour-altered
4
colour-altered varieties
4
varieties cut-flower
4
cut-flower crop
4
crop carnation
4

Similar Publications

Research Progress on Gene Regulation of Plant Floral Organogenesis.

Genes (Basel)

January 2025

National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.

Flowers, serving as the reproductive structures of angiosperms, perform an integral role in plant biology and are fundamental to understanding plant evolution and taxonomy. The growth and organogenesis of flowers are driven by numerous factors, such as external environmental conditions and internal physiological processes, resulting in diverse traits across species or even within the same species. Among these factors, genes play a central role, governing the entire developmental process.

View Article and Find Full Text PDF

Rapeseed ( L.) is known for its high-quality seed oil and protein content. However, its use in animal feed is restricted due to antinutritional factors present in the seedcake, with sinapine being one of the main compounds that reduces palatability.

View Article and Find Full Text PDF

Background: Acute lung injury (ALI) is a severe condition characterized by inflammation, tissue damage, and persistent activation of the cyclic GMP-AMP (cGAS)-stimulator of interferon genes (STING) pathway, which exacerbates the production of pro-inflammatory mediators and promotes the progression of ALI. Specific inhibition of this pathway has been shown to alleviate ALI symptoms. Kaempferol-3---L-(4″--p-coumaroyl)-rhamnoside (KAE), an active compound found in the flowers of Kitagawa, exhibits anti-inflammatory and antioxidant properties.

View Article and Find Full Text PDF

Background: Pediatric respiratory syncytial virus (RSV)-related acute lower respiratory tract infection (LRTI) commonly requires hospitalization. The Clinical Progression Scale Pediatrics (CPS-Ped) measures level of respiratory support and degree of hypoxia across a range of disease severity, but it has not been applied in infants hospitalized with severe RSV-LRTI.

Methods: We analyzed data from a prospective surveillance registry of infants hospitalized for RSV-related complications across 39 U.

View Article and Find Full Text PDF

Cannabis trichome development progresses in distinct phases that underpin the dynamic biosynthesis of cannabinoids and terpenes. This study investigates the molecular mechanisms underlying cannabinoid and terpenoid biosynthesis in glandular trichomes of Cannabis sativa (CsGTs) throughout their development. Female Cannabis sativa c.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!