Epidemiological studies show that cadmium (Cd) exposure causes pulmonary damage, such as emphysema, pneumonitis, and lung cancer. However, the mechanisms leading to pulmonary toxicity are not yet fully elucidated. The aim of this study was to further investigate cadmium chloride (CdCl(2)) induced toxicity using Calu-3 cells as an in vitro model of human bronchial epithelial cells. CdCl(2) induced effects following either apical or basolateral exposure were evaluated by Neutral Red Uptake (NRU), Trans-Epithelial Electrical Resistance (TEER), and alteration in Metallothionein 1X (MT1X), Heat shock protein 70 (HSP70), and Heme oxygenase 1 (HMOX-1) genes. CdCl(2) exposure resulted in a collapse of barrier function and the induction of MT1X, HMOX-1 and HSP70 genes, prior to alterations in cell viability. These effects were more pronounced when the exposure was from the basolateral side. Co-administration of N-Acetylcysteine (NAC) exerted a strong protective effect against CdCl(2) induced barrier damage and stress related genes, while other antioxidants only attenuated CdCl(2) induced HSP70 and HMOX-1 and showed no protective effect on the barrier collapse. These findings indicate that CdCl(2) exposure is likely to impair Calu-3 barrier function at non cytotoxic concentrations by a direct effect on adherens junction proteins. The protective effect of NAC against CdCl(2) induced MT1X, HSP70 and HMOX-1 genes, demonstrates an anti-oxidant effect of NAC in addition to Cd chelation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1159/000272060 | DOI Listing |
Sci Rep
January 2025
Department of Biochemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh, 11451, Saudi Arabia.
The increasing level of cadmium (Cd) contamination in soil due to anthropogenic actions is a significant problem. This problem not only harms the natural environment, but it also causes major harm to human health via the food chain. The use of chelating agent is a useful strategy to avoid heavy metal uptake and accumulation in plants.
View Article and Find Full Text PDFPharmaceuticals (Basel)
January 2025
Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt.
Unlabelled: Hazardous heavy metals, particularly cadmium (Cd), are widely distributed in the environment and cause oxidative stress in various animal and human organs. Clove oil (CLO), a common aromatic spice, has been used as a traditional medication as it has potent anti-inflammatory, antioxidant, and hepatoprotective properties.
Background/objectives: This study aimed to investigate the antioxidant, antiapoptotic, and anti-inflammatory effects of clove oil (CLO) against hepatorenal toxicity induced by cadmium (Cd).
Vet Sci
December 2024
College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
Cadmium accumulation in the body can damage a variety of organs and impair their development and functions. In the present study, we investigated the effect of cadmium on the stemness and proliferation of normal bovine mammary epithelial cells (BMECs). Normal bovine mammary epithelial cells treated with cadmium chloride were assessed for the expression of stemness-related proteins and cell proliferation.
View Article and Find Full Text PDFAquat Toxicol
January 2025
Department of Morphology, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil. Electronic address:
The rising production and improper disposal of titanium dioxide nanoparticles (TiO NPs) into aquatic systems present considerable environmental challenges, especially when these particles interact with other contaminants such as cadmium (Cd). Thus, the current study aimed to evaluate the potential toxic effects on the gills, chondrocranium, body growth, and mortality of Aquarana catesbeiana tadpoles. The tadpoles were exposed to environmentally relevant concentrations of TiO NPs (10 µg L), and CdCl (10 µg L), both individually and in combination, for 30 days (chronic exposure), along with a control group.
View Article and Find Full Text PDFCureus
December 2024
Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, IRQ.
Background: Synthesis of the original Schiff base CdCl (CHNO) compound (Schiff base complex) displays an extensive range of bioactivities and was predictably utilized to treat several syndromes.
Purpose: The goal of the existing experiment is to evaluate the gastroprotective effects of a novel Schiff base CdCl₂ (C14H21N3O2) compound in alcohol-induced gastric ulcers in rats by examining its antioxidant activity, anti-inflammatory effects, and modulation of key molecular markers, including heat shock protein-70 (HSP-70) and Bcl-2-associated X protein (Bax) proteins.
Methods: Five groups of rats were utilized in the current study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!