We previously showed that the inhalational anesthetic isoflurane protects against renal proximal tubule necrosis via isoflurane-mediated stimulation and translocation of sphingosine kinase-1 (SK1) with subsequent synthesis of sphingosine-1-phosphate (S1P) in renal proximal tubule cells (Kim M, Kim M, Kim N, D'Agati VD, Emala CW Sr, Lee HT. Am J Physiol Renal Physiol 293: F1827-F1835, 2007). We also demonstrated that the anti-necrotic and anti-inflammatory effect of isoflurane is due in part to phosphatidylserine (PS) externalization and subsequent release of transforming growth factor-beta1 (TGF-beta1) (Lee HT, Kim M, Kim J, Kim N, Emala CW. Am J Nephrol 27: 416-424, 2007). In this study, we tested the hypothesis that isoflurane, via TGF-beta1 release, increases caveolae formation in the buoyant fraction of the cell membrane of human renal proximal tubule (HK-2) cells to organize SK1 and S1P signaling. To detect SK1 protein in the caveolae/caveolin fractions, we overexpressed human SK1 in HK-2 cells (SK1-HK-2). SK1-HK-2 cells exposed to isoflurane increased caveolae/caveolin formation in the buoyant membrane fractions which contained key signaling intermediates involved in isoflurane-mediated renal tubule protection, including S1P, SK1, ERK MAPK, and TGF-beta1 receptors. Furthermore, treating SK1-HK-2 cells with recombinant TGF-beta1 or PS liposome mixture increased caveolae formation, mimicking the effects of isoflurane. Conversely, TGF-beta1-neutralizing antibody blocked the increase in caveolae formation induced by isoflurane in SK1-HK-2 cells. The increase in SK1 activity in the caveolae-enriched fractions from isoflurane-treated nonlentivirus-infected HK-2 cells, while smaller in magnitude, was qualitatively similar to that found in the SK1-HK-2 cell line. Finally, isoflurane also increased caveolae formation in the kidneys of TGF-beta1 +/+ mice but not in TGF-beta1 +/- mice (mice with reduced levels of TGF-beta1). Our study demonstrates that isoflurane organizes several key cytoprotective signaling intermediates including TGF-beta1 receptors, SK1 and ERK, within the caveolae fraction of the plasma membrane. Our findings may help to unravel the cellular signaling pathways of volatile anesthetic-mediated renal protection and lead to new therapeutic applications of inhalational anesthetics during the perioperative period.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853319PMC
http://dx.doi.org/10.1152/ajprenal.00115.2009DOI Listing

Publication Analysis

Top Keywords

caveolae formation
20
renal proximal
16
kim kim
16
proximal tubule
12
hk-2 cells
12
sk1-hk-2 cells
12
isoflurane
9
isoflurane tgf-beta1
8
tgf-beta1 release
8
release increases
8

Similar Publications

Caveolae, specialized and dynamic subdomains of the plasma membrane, have a crucial role in diverse cellular functions encompassing endocytosis, signal transduction, mechanosensation, lipid storage, and metabolism. Cavin family proteins are indispensable for caveolar formation and function. An increasing number of studies have found that cavins are involved in tumor growth, invasion, metastasis, and angiogenesis and may have dual roles in the regulation of cancer.

View Article and Find Full Text PDF

Marfan syndrome (MFS) is a systemic connective tissue disorder stemming from mutations in the gene encoding Fibrillin-1 (Fbn1), a key extracellular matrix glycoprotein. This condition manifests with various clinical features, the most critical of which is the formation of aortic root aneurysms. Reduced nitric oxide (NO) production due to diminished endothelial nitric oxide synthase (eNOS) activity has been linked to MFS aortic aneurysm pathology.

View Article and Find Full Text PDF

The Sprouty (SPRY) proteins are evolutionary conserved modulators of receptor tyrosine kinase (RTK) signaling. SPRY2 inhibits fibroblast growth factor (FGF) signaling, whereas it enhances epidermal growth factor (EGF) signaling through inhibition of EGF receptor (EGFR) endocytosis, ubiquitination, and degradation. In this study, we analyzed the effects of SPRY2 on endocytosis and degradation of FGF receptor 1 (FGFR1) using two human glioblastoma (GBM) cell lines with different endogenous SPRY2 levels.

View Article and Find Full Text PDF

The cell membrane transport capacity and surface targets of multiple myeloma (MM) cells heavily influence chemotherapy and immunotherapy. Here, it is found that caveolin-1 (CAV1), a primary component of membrane lipid rafts and caveolae, is highly expressed in MM cells and is associated with MM progression and drug resistance. CAV1 knockdown decreases MM cell adhesion to stromal cells and attenuates cell adhesion-mediated drug resistance to bortezomib.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is the most aggressive and lethal subtype of breast cancer among women. Chemotherapy acts as the standard regimen for TNBC treatment but suffers from limited drug accumulation in tumor regions and undesired side effects. Herein, we developed a synergistic strategy by combining a red blood cell (RBC) membrane-liposome hybrid nanovesicle with short-term fasting (STF) for improved chemotherapy of TNBC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!