Neuromorphic artificial neural networks attempt to understand the essential computations that take place in the dense networks of interconnected neurons making up the central nervous systems in living creatures. This article demonstrates that artificial spiking neural networks--built to resemble the biological model--encoding information in the timing of single spikes, are capable of computing and learning clusters from realistic data. It shows how a spiking neural network based on spike-time coding can successfully perform unsupervised and supervised clustering on real-world data. A temporal encoding procedure of continuously valued data is developed, together with a hardware implementation oriented new learning rule set. Solutions that make use of embedded soft-core microcontrollers are investigated, to implement some of the most resource-consuming components of the artificial neural network. Details of the implementations are given, with benchmark application evaluation and test bench description. Measurement results are presented, showing real-time and adaptive data processing capabilities, comparing these to related findings in the specific literature.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbp066DOI Listing

Publication Analysis

Top Keywords

neural networks
8
artificial neural
8
spiking neural
8
neural network
8
neural
5
real-time classification
4
classification datasets
4
datasets hardware
4
hardware embedded
4
embedded neuromorphic
4

Similar Publications

Motivation: Ensuring connectivity and preventing fractures in tubular object segmentation are critical for downstream analyses. Despite advancements in deep neural networks (DNNs) that have significantly improved tubular object segmentation, existing methods still face limitations. They often rely heavily on precise annotations, hindering their scalability to large-scale unlabeled image datasets.

View Article and Find Full Text PDF

Purpose: The study aimed to develop a deep learning model for rapid, automated measurement of full-spine X-rays in adolescents with Adolescent Idiopathic Scoliosis (AIS). A significant challenge in this field is the time-consuming nature of manual measurements and the inter-individual variability in these measurements. To address these challenges, we utilized RTMpose deep learning technology to automate the process.

View Article and Find Full Text PDF

UniAMP: enhancing AMP prediction using deep neural networks with inferred information of peptides.

BMC Bioinformatics

January 2025

College of Artificial Intelligence, Nanjing Agricultural University, Weigang No.1, Nanjing, 210095, Jiangsu, China.

Antimicrobial peptides (AMPs) have been widely recognized as a promising solution to combat antimicrobial resistance of microorganisms due to the increasing abuse of antibiotics in medicine and agriculture around the globe. In this study, we propose UniAMP, a systematic prediction framework for discovering AMPs. We observe that feature vectors used in various existing studies constructed from peptide information, such as sequence, composition, and structure, can be augmented and even replaced by information inferred by deep learning models.

View Article and Find Full Text PDF

Biomedical research increasingly relies on three-dimensional (3D) cell culture models and artificial-intelligence-based analysis can potentially facilitate a detailed and accurate feature extraction on a single-cell level. However, this requires for a precise segmentation of 3D cell datasets, which in turn demands high-quality ground truth for training. Manual annotation, the gold standard for ground truth data, is too time-consuming and thus not feasible for the generation of large 3D training datasets.

View Article and Find Full Text PDF

In order to reduce the number of parameters in the Chinese herbal medicine recognition model while maintaining accuracy, this paper takes 20 classes of Chinese herbs as the research object and proposes a recognition network based on knowledge distillation and cross-attention - ShuffleCANet (ShuffleNet and Cross-Attention). Firstly, transfer learning was used for experiments on 20 classic networks, and DenseNet and RegNet were selected as dual teacher models. Then, considering the parameter count and recognition accuracy, ShuffleNet was determined as the student model, and a new cross-attention mechanism was proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!