Gene promoters are enriched in guanine clusters that potentially fold into quadruplex structures. Such quadruplexes were implicated in the regulation of gene expression, plausibly by interacting with transcription factors. We showed previously that homodimers of the myogenic transcription factor MyoD bound in vitro most tightly bimolecular quadruplexes of promoter sequences of muscle-specific genes. By contrast, MyoD-E47 heterodimers formed tighter complexes with d(CANNTG) E-box motifs that govern muscle gene expression. Here, we show that DNA quadruplexes enhance in vivo MyoD and E-box-driven expression of a firefly luciferase (FL) reporter gene. HEK293 cells were transfected with FL expressing p4RTK-FL vector alone or together with MyoD expressing pEMSV-MyoD plasmid, with quadruplexes of alpha7 integrin or sarcomeric mitochondrial creatine kinase (sMtCK) muscle gene promoters or with a combination thereof. Whereas MyoD elevated by approximately 10-fold the levels of FL mRNA and protein, the DNA quadruplexes by themselves did not affect FL expression. However, together with MyoD, quadruplex DNA increased by approximately 35-fold the amounts of FL mRNA and protein. Without affecting its expression, DNA quadruplexes bound MyoD in the cells. Based on these results, we propose models for the regulation of muscle gene transcription by direct interaction of MyoD with promoter quadruplex structures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2853122 | PMC |
http://dx.doi.org/10.1093/nar/gkp1208 | DOI Listing |
Appl Biochem Biotechnol
January 2025
Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital Affiliated to Tianjin Medical University, No.154 Heping Road to Anshan, Tianjin City, 300052, People's Republic of China.
Dysregulated circular RNAs (circRNAs) has been revealed to be involved in pulmonary fibrosis progression. Herein, this study focused on exploring the function and mechanism of circRNA Zinc Finger MYM-Type Containing 2 (circZMYM2) on idiopathic pulmonary fibrosis (IPF) using transforming growth factor (TGF)-β1-stimulated fibroblasts. Human fibroblast cell lines IMR-90 and HFL1 were stimulated with TGF-β1 to mimic fibrosis condition in vitro.
View Article and Find Full Text PDFHum Mol Genet
January 2025
Division of Neurology, Cincinnati Children's Hospital, 3333 Burnet Ave, Cincinnati, OH 45229, United States.
Myotonic Dystrophy type 2 (DM2) is a multisystem disease affecting many tissues, including skeletal muscle, heart, and brain. DM2 is caused by unstable expansion of CCTG repeats in an intron 1 of a gene coding for cellular nuclear binding protein (CNBP). The expanded CCTG repeats cause DM2 pathology due to the accumulation of RNA CCUG repeats, which affect RNA processing in patients' cells.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China.
Purpose: The major cardiac voltage-gated sodium channel Na1.5 (I) is essential for cardiac action potential initiation and subsequent propagation. Compound Chinese medicine Wenxin Keli (WXKL) has been shown to suppress arrhythmias and heart failure.
View Article and Find Full Text PDFNeurol Genet
December 2024
From the The Institute of Clinical Medicine (K.Õ., T.R., E.Õ.-S., L.M., S. Pajusalu), Faculty of Medicine, University of Tartu; Genetics and Personalized Medicine Clinic (K.Õ., T.R., L.M., Sander Pajusalu); Children's Clinic (E.O.-S.); Pathology Department (S. Puusepp), Tartu University Hospital, Estonia; Folkhalsan Research Center (M.S., B.U.), Helsinki; and Tampere Neuromuscular Center (B.U.), Tampere, Finland.
Background And Objectives: Tibial muscular dystrophy (TMD) is an autosomal dominant, slowly progressive late-onset distal myopathy. TMD was first described in 1991 by Udd et al. in Finnish patients, who were later found to harbor a heterozygous unique 11-bp insertion/deletion in the last exon of the gene-the Finnish founder variant (FINmaj).
View Article and Find Full Text PDFBMJ Open
December 2024
Department of Rehabilitation, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
Introduction: Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, primarily affecting the respiratory and digestive systems. Respiratory rehabilitation techniques play a crucial role in managing pulmonary symptoms and maintaining lung function in CF patients. Although various techniques have been developed and applied, there is currently no globally recognised optimal respiratory rehabilitation regimen.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!