Background And Scope: Models of nectar formation and exudation in multilayered nectaries with modified stomata or permeable cuticle are evaluated. In the current symplasmic model the pre-nectar moves from terminal phloem through the symplasm into the apoplasm (cell walls and intercellular spaces) with nectar formation by either granulocrine or eccrine secretion and its diffusion outwards. It is concluded, however, that no secretory granules are actually produced by the endoplasmic reticulum, and that secretory Golgi vesicles are not involved in the transport of nectar sugar. Therefore, the concept of granulocrine secretion of nectar should be discarded. The specific function of the endomembrane system in nectary cells remains unknown. According to the apoplasmic model, the pre-nectar moves from the terminal phloem in the apoplasm and, on the way, is transformed from phloem sap into nectar. However, viewed ultrastructurally, the unloading (terminal) phloem of nectaries appears to be less active than that of the leaf minor veins, and is therefore not actively involved in the secretion of pre-nectar components into the apoplasm. This invalidates the apoplasmic model. Neither model provides an explanation for the origin of the driving force for nectar discharge.
Proposal: A new model is proposed in which nectar moves by a pressure-driven mass flow in the nectary apoplasm while pre-nectar sugars diffuse from the sieve tubes through the symplasm to the secretory cells, where nectar is formed and sugars cross the plasma membrane by active transport ('eccrine secretion'). The pressure originates as the result of water influx in the apoplasm from the symplasm along the sugar concentration gradient. It follows from this model that there can be no combinations of apoplasmic and symplasmic pre-nectar movements. The mass-flow mechanism of nectar exudation appears to be universal and applicable to all nectaries irrespective of their type, morphology and anatomy, presence or absence of modified stomata, and their own vascular system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826252 | PMC |
http://dx.doi.org/10.1093/aob/mcp302 | DOI Listing |
Int J Mol Sci
December 2024
PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, 34398 Montpellier, France.
The green peach aphid () is a generalist pest damaging crops and transmitting viral pathogens. Using Illumina sequencing of small (s)RNAs and poly(A)-enriched long RNAs, we analyzed aphid virome components, viral gene expression and antiviral RNA interference (RNAi) responses. Myzus persicae densovirus (family ), a single-stranded (ss)DNA virus persisting in the aphid population, produced 22 nucleotide sRNAs from both strands of the entire genome, including 5'- and 3'-inverted terminal repeats.
View Article and Find Full Text PDFMicrosc Microanal
November 2024
Department of Botany, University of Peshawar, Pakistan.
Micromorphological and phytochemical studies play a major role in quality control and standardization of traditional or herbal medications. In the present research, micromorphological assessment of Heliotropium rarifloum stocks was performed through light and scanning electron microscopies (LM & SEM). The anatomy of leaves, stem and root showed salient histological features.
View Article and Find Full Text PDFPLoS Pathog
September 2024
China-USA Citrus Huanglongbing Joint Laboratory, National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China.
Citrus huanglongbing (HLB), which is caused by the phloem-colonizing bacteria Candidatus Liberibacter asiaticus (CLas), poses a significant threat to citrus production worldwide. The pathogenicity mechanism of HLB remains poorly understood. SEC-dependent effectors (SDEs) have been suggested to play critical roles in the interaction between citrus and CLas.
View Article and Find Full Text PDFJ Insect Sci
July 2024
USDA Forest Service, Rocky Mountain Research Station, Logan, UT 84321, USA.
Insects live in a wide range of thermal environments and have evolved species- and location-specific physiological processes for survival in hot and cold extremes. Thermally driven dormancy strategies, development rates and thresholds are important for synchronizing cohorts within a population and to local climates and often vary among populations within a species. Mountain pine beetle (MPB), Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae, Scolytinae), is a widely distributed forest insect native to North America with clinal genetic differentiation in thermally dependent traits.
View Article and Find Full Text PDFJ Agric Food Chem
August 2024
Lab of Molecular Plant Biology and KU Leuven Plant Institute, Kasteelpark Arenberg 31, B 3001 Leuven, Belgium.
Common agronomic practices such as stem topping, side branch removal, and girdling can induce wound priming, mediated by jasmonic acid (JA). Low light conditions during greenhouse tomato production make the leaves more sensitive to the application of exogenous sugar, which is perceived as a "danger" in accordance with the concept of "Sweet Immunity". Consequently, source-sink balances are altered, leading to the remobilization of stem starch reserves and enabling the redirection of more carbon toward developing fruits, thereby increasing tomato yield and fruit quality.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!