Effects of leachate accumulation on landfill stability in humid regions of China.

Waste Manag

Department of Environmental Science and Engineering, Tsinghua University, 100084 Beijing, PR China.

Published: May 2010

Leachate levels are important to landfill stability and safety. High leachate or water levels often lead to landfill instability, which can cause accidents. Here a case study of a landfill located in a humid region of southern China is presented. Leachate distribution and quality were systematically analyzed, and the effect of leachate level on waste-mass stability was assessed. Boreholes were drilled in the field, samples were analyzed in the laboratory, and a simulation was performed. In addition, the safety and stability of the landfill was evaluated. The leachate level in the landfill was 9-19m, which was higher than the top of the dam crest (8-20m). Leachate accounted for more than 1/4 of the total landfill storage capacity. The contaminant concentration of the leachate samples collected directly from the waste body was very high, with large variation among the samples. The mean concentrations of NH(3)-N, BOD, and COD from the waste body were 5404, 14,136, and 22,691mg/L, nearly 2.7, 2.4, and 1.8 times the mean concentrations in the leachate pond, respectively. Three series of shear strength parameters were used in a slope stability analysis, and a limit equilibrium method was used to calculate the factor of safety (Fs). The analysis showed that Fs could be affected by potential anisotropy in the shear strength of the waste. The minimum values of Fs corresponding to series I were 1.84 and 1.17 for units capital I, Ukrainian and II, respectively. The Fs value of unit II was significantly lower than the safe design value (1.25). In addition, Fs decreased with increase in the normalized height of the leachate level, h/H, where h is the height of the leachate mound and H is the maximum thickness of the landfill. If the h/H values of units I and II are kept below 50% and 40%, respectively, a safe design value of 1.25 for Fs can be guaranteed. Therefore, some measures to prevent risk should be considered.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.wasman.2009.12.005DOI Listing

Publication Analysis

Top Keywords

leachate level
12
leachate
10
landfill
8
landfill stability
8
waste body
8
shear strength
8
safe design
8
design 125
8
height leachate
8
stability
5

Similar Publications

Improper and unscientific management of municipal solid waste (MSW) landfill sites has increasingly become a pressing environmental issue especially in the mountainous regions worldwide. In view of this, an attempt was made to assess the detrimental effects of MSW landfill on the natural water sources at Dharamshala, Himachal Pradesh. Further, the suitability of potential landfill site and dispersion of pollutant air masses were stipulated using Arc GIS and HYSPLIT model.

View Article and Find Full Text PDF

Can biodegradable plastics mitigate plastamination? Feedbacks from marine organisms.

J Hazard Mater

January 2025

Stazione Zoologica Anton Dohrn, Department of Ecosustainable Marine Biotechnology, Via Ammiraglio Ferdinando Acton 55, Naples 80133, Italy; Department of Biology University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Vicinale Cupa Cintia 26, Naples 80126, Italy; Institute of Water Research (IRSA) CNR Taranto, Italy. Electronic address:

The EU plastic strategy aims to reduce the environmental impact of the increasing plastic production, by replacing petrochemical-based polymers with biodegradable ones. But this mitigation measure for the plastamination might, in turn, generate bio-based microplastics in environments that are not necessarily safe. Biodegradable and non-biodegradable plastics, polylactic acid (PLA) and polypropylene (PP) respectively, and their leachates were used for testing microplastic (MP) effects on seven marine species from different trophic levels, including bacteria, algae, rotifers, copepods, amphipods and branchiopods.

View Article and Find Full Text PDF

The ultraviolet-activated peroxymosnofulate (UV/PMS) system, an effective advanced oxidation process for removing dissolved organic matter (DOM) from wastewater, is limited by high chloride ion (Cl) concentrations in landfill leachate. This study used Fourier transform ion cyclotron resonance mass spectrometry to explore the transformation of DOM in the UV/PMS system with a high Cl concentration. The results revealed that elevated Cl levels generate reactive chlorine species, including chlorine radicals, dichlorine radicals, and hypochlorous acid/hypochlorite, reducing the total organic carbon (TOC) removal efficiency of Suwannee River natural organic matter (SRNOM) from 78.

View Article and Find Full Text PDF

The paper deals with an analysis of the amount of 16 polycyclic aromatic hydrocarbons (PAHs (Polycyclic aromatic hydrocarbons-16 defined by US EPA.)) released from reclaimed asphalt mixtures used in base layers of road surfaces and in binder layers in road construction using cold in-place recycling. For the ten samples tested, the sum of 16 PAHs was determined directly for the crushed asphalt mixture and for its 24-h leachate.

View Article and Find Full Text PDF

Review on Gallium in Coal and Coal Waste Materials: Exploring Strategies for Hydrometallurgical Metal Recovery.

Molecules

December 2024

Faculty of Non-Ferrous Metals, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Krakow, Poland.

Gallium, a critical and strategic material for advanced technologies, is anomalously enriched in certain coal deposits and coal by-products. Recovering gallium from solid residues generated during coal production and utilization can yield economic benefits and positive environmental gains through more efficient waste processing. This systematic literature review focuses on gallium concentrations in coal and its combustion or gasification by-products, modes of occurrence, gallium-hosting phases, and hydrometallurgical recovery methods, including pretreatment procedures that facilitate metal release from inert aluminosilicate minerals.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!