The effects of a small interfering RNA targeting ryanodine receptor 2 (si-Ryr2) on cardiomyocytes injury following a simulated ischemia-reperfusion (I/R) were investigated. Pretreated with si-Ryr2 or ryanodine, primary cultures of neonatal rat cardiomyocytes were subjected to a protocol of simulated I/R. Compared with control, the cytosolic Ca(2+) concentration ([Ca(2+)](i)) and the generation of reactive oxygen species (ROS) was significantly augmented after I/R. Concomitant with these, cell injury assessed by Annexin V/PI staing, mitochondria membrane potential (DeltaPsim) and the leakage of lactic dehydrogenase (LDH) and creatine phosphokinase (CPK) were aggravated. Si-Ryr2 treatment reduced [Ca(2+)](i) and ROS generation and protected the cardiomyocytes from subsequent I/R injury, as evidenced by stable DeltaPsim and decreased Annexin V(+) PI(-) staing and enzymes release. Moreover, si-Ryr2 exerted more effective protection on I/R injury compared to ryanodine. The present study demonstrated for the first time that in neonatal cardiomyocytes, si-Ryr2 reduces cell death associated with attenuating [Ca(2+)](i) and ROS production. Furthermore, we attempt to speculate that si-Ryr2 excel ryanodine in Ryr2 function research of cardioprotection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biopha.2009.09.015 | DOI Listing |
Curr Probl Cardiol
January 2025
Department of Cardiology, Lanzhou University Second Hospital, Lanzhou, China. Electronic address:
Atrial fibrillation (AF) is tightly linked to mitochondrial dysfunction, calcium (Ca²⁺) imbalance, and oxidative stress. Mitochondrial Ca²⁺ is essential for regulating metabolic enzymes, maintaining the tricarboxylic acid (TCA) cycle, supporting the electron transport chain (ETC), and producing ATP. Additionally, Ca²⁺ modulates oxidative balance by regulating antioxidant enzymes and reactive oxygen species (ROS) clearance.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, 840 05 Bratislava, Slovakia.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca release from the sarcoplasmic reticulum (SR).
View Article and Find Full Text PDFCurr Probl Cardiol
January 2025
Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32816, USA.
The regulation of calcium signaling within cardiomyocytes is pivotal for maintaining cardiac function, with disruptions in sarcoplasmic reticulum (SR) calcium handling linked to various heart diseases. This review explores the emerging role of microRNAs (miRNAs) in modulating SR calcium dynamics, highlighting their influence on cardiomyocyte maturation, function, and disease progression. We present a comprehensive overview of the mechanisms by which specific miRNAs, such as miR-1, miR-24, and miR-22, regulate key components of calcium handling, including ryanodine receptors, SERCA, and NCX.
View Article and Find Full Text PDFHum Genomics
January 2025
Division of Genome Science, Department of Precision Medicine, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, Chungbuk, 28159, Republic of Korea.
Background: Congenital anomalies (CAs) encompass a wide spectrum of structural and functional abnormalities during fetal development, commonly presenting at birth. Identifying the cause of CA is essential for accurate diagnosis and treatment. Using a target-gene approach, genetic variants could be found in certain CA patients.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Faculty of Health Sciences, University of Macau, Taipa, Macau.
Ion channels play a crucial role in cardiac functions, and their activities exhibit dynamic changes during heart development. However, the precise function of ion channels in human heart development remains elusive. In this study, we utilized human embryonic stem cells (hESCs) as a model to mimic the process of human embryonic heart development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!