Injuries to the avascular region of knee meniscal cartilage do not heal spontaneously. To address this problem we have developed a new stem cell/collagen-scaffold implant system in which human adult bone marrow mesenchymal stem cells are seeded onto a biodegradable scaffold that allows controlled delivery of actively dividing cells to the meniscus surface. Sandwich constructs of two white zone ovine meniscus discs with stem cell/collagen-scaffold implant in between were cultured in vitro for 40 days. Histomorphometric analysis revealed superior integration in the stem cell/collagen-scaffold groups compared to the cell-free collagen membrane or untreated controls. The addition of TGF-beta1 to differentiate stem cells to chondrocytes inhibited integration. Biomechanical testing demonstrated a significant 2-fold increase in tensile strength in all constructs using the stem cell/collagen-scaffold compared to control groups after 40 days in culture. Integration was significantly higher when collagen membranes were used that had a more open/spongy structure adjacent to both meniscal cartilage surfaces, whereas a collagen scaffold designed for osteoinduction failed to induce any integration of meniscus. In conclusion, the stem cell/collagen-scaffold implant is a potential therapeutic treatment for the repair of white zone meniscal cartilage tears.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2009.12.023 | DOI Listing |
Bioeng Transl Med
January 2025
Translational NanoMedicine Laboratory, Department of Medicine, Surgery and Dentistry University of Salerno Baronissi SA Italy.
The advent of bioprinting has enabled the creation of precise three-dimensional (3D) cell cultures suitable for biomimetic in vitro models. In this study, we developed a novel protocol for 3D printing methacrylated collagen (ColMa, or PhotoCol®) combined with tendon stem/progenitor cells (hTSPCs) derived from human tendon explants. Although pure ColMa has not previously been proposed as a printable hydrogel, this paper outlines a robust and highly reproducible pipeline for bioprinting this material.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopaedics, Warren Alpert Medical School of Brown University/Rhode Island Hospital, Providence, Rhode Island, USA.
Background: Meniscal injuries that fail to heal instigate catabolic changes in the knee's microenvironment, posing a high risk for developing posttraumatic osteoarthritis (PTOA). Previous research has suggested that human cartilage-derived progenitor cells (hCPCs) can stimulate meniscal repair in a manner that depends on stromal cell-derived factor 1 (SDF-1) pathway activity.
Hypothesis: Overexpressing the SDF-1 receptor CXCR4 in hCPCs will increase cell trafficking and further improve the repair efficacy of meniscal injuries.
Front Bioeng Biotechnol
December 2024
Department of Bioengineering, University of Washington, Seattle, WA, United States.
Colonic epithelium is situated above a layer of fibroblasts that provide supportive factors for stem cells at the crypt base and promote differentiation of cells in the upper crypt and luminal surface. To study the fibroblast-epithelial cell interactions, an crypt model was formed on a shaped collagen scaffold with primary epithelial cells growing above a layer of primary colonic fibroblasts. The crypts possessed a basal stem cell niche populated with proliferative cells and a differentiated, nondividing cell zone at the luminal crypt end.
View Article and Find Full Text PDFGels
November 2024
IRCCS Ospedale Galeazzi-Sant'Ambrogio, 20157 Milan, Italy.
Strategies to repair the meniscus have achieved limited success; thus, a cell-based therapy combined with an appropriate biocompatible scaffold could be an interesting alternative to overcome this issue. The aim of this project is to analyze different cell populations and a collagen gel scaffold as a potential source for meniscus tissue engineering applications. Dermal fibroblasts (DFs) and mesenchymal stem cells (MSCs) isolated from adipose tissue (ASCs) or bone marrow (BMSCs) were analyzed.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2024
Orthopaedic Stem Cell Research Laboratory, Cedars-Sinai Medical Center, Los Angeles, CA, United States.
Introduction: Tendon injuries represent an ongoing challenge in clinical practice due to poor regenerative capacity, structure, and biomechanical function recovery of ruptured tendons. This study is focused on the assessment of a novel strategy to repair ruptured Achilles tendons in a Nude rat model using stem cell-seeded biomaterial.
Methods: Specifically, we have used induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells (iMSCs) overexpressing the early tendon marker Scleraxis (SCX, iMSC, iTenocytes) in combination with an elastic collagen scaffold.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!