Microstructured and high surface energy titanium substrates increase osseointegration in vivo. In vitro, osteoblast differentiation is increased, but effects of the surface directly on multipotent mesenchymal stem cells (MSCs) and consequences for MSCs in the peri-implant environment are not known. We evaluated responses of human MSCs to substrate surface properties and examined the underlying mechanisms involved. MSCs exhibited osteoblast characteristics (alkaline phosphatase, RUNX2, and osteocalcin) when grown on microstructured Ti; this effect was more robust with increased hydrophilicity. Factors produced by osteoblasts grown on microstructured Ti were sufficient to induce co-cultured MSC differentiation to osteoblasts. Silencing studies showed that this was due to signaling via alpha2beta1 integrins in osteoblasts on the substrate surface and paracrine action of secreted Dkk2. Thus, human MSCs are sensitive to substrate properties that induce osteoblastic differentiation; osteoblasts interact with these surface properties via alpha2beta1 and secrete Dkk2, which acts on distal MSCs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2821717PMC
http://dx.doi.org/10.1016/j.biomaterials.2009.12.029DOI Listing

Publication Analysis

Top Keywords

titanium substrates
8
mesenchymal stem
8
human mscs
8
substrate surface
8
surface properties
8
grown microstructured
8
differentiation osteoblasts
8
mscs
6
surface
5
direct indirect
4

Similar Publications

The current demand for highly sensitive, optical sensors in biodiagnostics has prompted the development of ultrathin metal coatings on a range of substrates. Given the potential attenuation of the signal from a plasmonic sensor for the detection of fluorescent molecules when an adhesion layer between the substrate and coating is employed, this study examines the impact of various factors on the adhesion strength between gold coatings and substrates comprising glass and cyclo-olefin-polymer (COP). The objective is to identify potential configurations for high adhesion strength, thereby eliminating the need for an adhesion layer in the fabrication of optical sensors with gold coatings for diagnostic applications or to utilize a minimal adhesion layer thickness.

View Article and Find Full Text PDF

Infections continue to pose significant challenges in dentistry, necessitating the development of innovative solutions that can effectively address these issues. This study focuses on creating coatings made from polymethyl methacrylate (PMMA) enriched with zinc oxide-silver composite nanoparticles, layered to Ti6Al4V-titanium alloy substrates. The application of these materials aims to create a solution for the abutments utilized in complete dental implant systems, representing the area most susceptible to bacterial infections.

View Article and Find Full Text PDF

Enhancing CO reduction with formamide-Ni@TiO catalyst.

J Environ Sci (China)

July 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Formamide condensation with Ni can generate the NC structure, widely recognized as an efficient catalyst for electrocatalytic CO reduction reaction (CORR). To improve the utilization efficiency of Ni atoms, we introduced metal oxides as substrates to modulate the growth of a formamide-Ni (FA-Ni) condensate. FA-Ni@TiO demonstrated 2.

View Article and Find Full Text PDF

Optical Properties of Thick TiO-P25 Films.

Nanomaterials (Basel)

January 2025

Department of Environmental Engineering, University of Calabria, 87036 Rende, Italy.

In this study, TiO-P25 films on FTO substrates were synthesized using the sol-gel process and studied using Variable Angle Spectroscopy Ellipsometry (VASE) to determine their optical constants and thickness. The measurements were carried out at room temperature in the wavelength range of (300-900) nm at incident angles varying from 55° to 70°. The resulting thicknesses were found to be around 1000 nm.

View Article and Find Full Text PDF

The surface topography and chemistry of titanium-aluminum-vanadium (Ti6Al4V) implants play critical roles in the osteoblast differentiation of human bone marrow stromal cells (MSCs) and the creation of an osteogenic microenvironment. To assess the effects of a microscale/nanoscale (MN) topography, this study compared the effects of MN-modified, anodized, and smooth Ti6Al4V surfaces on MSC response, and for the first time, directly contrasted MN-induced osteoblast differentiation with culture on tissue culture polystyrene (TCPS) in osteogenic medium (OM). Surface characterization revealed distinct differences in microroughness, composition, and topography among the Ti6Al4V substrates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!